

Goal Awareness for Conversational AI: Proactivity, Non-collaborativity, and Beyond

Yang Deng¹, Wenqiang Lei², Minlie Huang³, Tat-Seng Chua¹

¹National University of Singapore

²Sichuan University, ³Tsinghua University

History of Conversational AI

Dialogue and Interactive Systems has become one of the most popular tracks in *ACL venues

Papers published at ACL/EMNLP/NAACL over the past decade

Typical Research in Dialogue Systems – Context Understanding

Typical Research in Dialogue Systems – Response Generation

I own a boat; I only wear tennis shoes.

Sneakers; Sneakers are shoes primarily designed for sports or other forms of ...

My everyday wear sandals were torn yesterday; Embarrassed

Persona-based Response Generation

Knowledge-grounded Response Generation

Empathetic Response Generation

Era of Large Language Models

Bard

New Bing

Claude

Alpaca

Vicuna

Dolly

Stable Vicuna

Powerful capabilities of Context Understanding & Response Generation

ChatGPT

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

Explain the moon

landing to a 6 year old

D > G > A = B

D > C > A = B

A

Explain gravity.

C

Moon is natural

B

Explain war..

0

People went to

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Alpaca – SFT w/ Instruction-following Examples

Vicuna - SFT w/ ChatGPT-distilled Conversation Data

Chat with Open Large Language Models

- ☐ SFT w/ Instruction-following Examples
- ☐ SFT w/ ChatGPT-distilled Conversation Data

<u>Vicuna</u> : a chat assistant fine-tuned from LLaMA on user-shared conversations by LMSYS	<u>WizardLM</u> : an instruction-following LLM using evol-instruct by Microsoft	Guanaco: a model fine-tuned with QLoRA by UW
MPT-Chat: a chatbot fine-tuned from MPT-7B by MosaicML	<u>GPT4All-Snoozy</u> : A finetuned LLaMA model on assistant style data by Nomic AI	Koala: a dialogue model for academic research by BAIR
<u>RWKV-4-Raven</u> : an RNN with transformer-level LLM performance	Alpaca: a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford	<u>ChatGLM</u> : an open bilingual dialogue language model by Tsinghua University
OpenAssistant (oasst): an Open Assistant for everyone by LAION	<u>LLaMA</u> : open and efficient foundation language models by Meta	<u>Dolly</u> : an instruction-tuned open large language model by Databricks

<u>FastChat-T5</u>: a chat assistant fine-tuned from FLAN-T5 by LMSYS

Limitation

ChatGPT:

- ☐ ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical answers.
- ☐ ChatGPT is sensitive to tweaks to the input phrasing or attempting the same prompt multiple times.
- The model is often excessively verbose and overuses certain phrases, such as restating that it's a language model trained by OpenAI.
- Ideally, the model would ask clarifying questions when the user provided an ambiguous query. Instead, ChatGPT usually guesses what the user intended.
- While we've made efforts to make the model refuse inappropriate requests, it will sometimes respond to harmful instructions or exhibit biased behavior.
- ★ Instruction-following Conversational AI The conversation is led by the user, and the system simply follows the user's instructions or intents.

Goal Awareness

Goal Awareness refers to the state of not only being responsive to the users but also aware of the target conversational goal and capable of leading the conversation towards the goal.

Three Key Elements in Proactive Conversational Al

- Anticipation represents the goal or intended result of the proactive dialogue, which relies on the conversational agent's assumption on either functional or sociable outcomes.
- Initiative refers to the ability of the conversational agent to take possible actions for driving the conversation towards the anticipation.
- Planning is the process of designing and organizing the structure and flow of a strategic conversation, involving a mix of initiative to achieve the anticipation.

Goal Awareness – Proactivity

Improve user engagement and service efficiency.

Goal Awareness - Non-collaborativity

Handle non-collaborative dialogues, such as conflicting goals or non-collaborative users

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - ☐ The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Conversational System Preliminaries

Typical applications for conversational systems:

- Open-domain Dialogue Systems
- ☐ Task-oriented Dialogue Systems
- Conversational Information-seeking Systems
 - Conversational Question Answering Systems
 - Conversational Recommender Systems
 - Conversational Search Systems

Open-domain Dialogue Systems

"An open-domain dialogue system aims to establish long-term connections with users by satisfying the human need for various social supports, such as communication, affection, and belongings."

Huang et al. (2020)

In general, the system is designed to echo the user-oriented **topics**, **emotions**, or **views**.

Agent	Message		
Turker 2	I'd love that job. Visiting Jupiter would be cool too, but that is impossible due to the intense radiation.		
Turker 1	Yeah. The earth will be helium free by the end of the 21st century. I wonder if we could make more of it in a lab? Is it even needed?		
•••	Topical-Chat		
I finally got promoted today at work.			
Opeanor	EmpatheticDialogue Why would anyone promote you?		
ſ	Why would anyone promote you? Congrats! That's great! Listener		

Persona 1	Persona 2
I like to ski	I am an artist
My wife does not like me anymore	I have four children
I have went to Mexico 4 times this year	I recently got a cat
I hate Mexican food	I enjoy walking for exercise
I like to eat cheetos	I love watching Game of Thrones

[PERSON 1:] Hi

[PERSON 2:] Hello! How are you today?

[PERSON 1:] I am good thank you, how are you.

[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.

[PERSON 1:] Nice! How old are your children?

[PERSON 2:] I have four that range in age from 10 to 21. You?

[PERSON 1:] I do not have children at the moment.

[PERSON 2:] That just means you get to keep all the popcorn for yourself.

[PERSON 1:] And Cheetos at the moment!

[PERSON 2:] Good choice. Do you watch Game of Thrones?

[PERSON 1:] No, I do not have much time for TV.

[PERSON 2:] I usually spend my time painting: but, I love the show.

PersonaChat

Huang et al., 2020. "Challenges in building intelligent open-domain dialog systems" (TOIS '20) Zhang et al., 2018. "Personalizing Dialogue Agents: I have a dog, do you have pets too?" (ACL '18)

Gopalakrishnan et al., 2019. "Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations" (Interspeech '19)
Rashkin et al., 2019. "Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset" (ACL '19)

PLMs for Open-domain Dialogue Systems

Due to the expensiveness of human-annotated dialogue corpus, researchers typically adopt discussion threads from social media, e.g., Reddit or Twitter, for pretraining.

Persona for Unguided Speaker:	Persona for Guided Speaker:	
My son plays on the local football team.	My eyes are green.	
I design video games for a living.	I wear glasses that are cateye.	

Wizard of Wikipedia topic: Video game design Previous utterances (shown to speakers):

- U: What video games do you like to play?
- G: all kinds, action, adventure, shooter, platformer, rpg, etc. but video game design requires both artistic and technical competence AND writing skills. that is one part many people forget

Actual utterances:

- U: Exactly! I think many people fail to notice how beautiful the art of video games can be. (PB)
- (G selected the WoW suggestion: "Indeed, Some games games are purposely designed to be a work of a persons creative expression, many though have been challenged as works of art by some critics.")
- G: Indeed, Some games games are purposely designed to be a work of a persons creative expression, many though have been challenged as works of art by some critics. (K)
- U: Video games are undervalued by many and too easily blamed for problems like obesity or violence in kids (K)
- G: Indeed, Just last week my son was playing some Tine 2 and it was keeping him so calm. Games are therapeutic to some. (S)
- U: I use games to relax after a stressful day, the small escape is relaxing. (PB)
- (G selected the ED suggestion: "I enjoy doing that after a hard day at work as well. I hope it relaxes you!")
- G: I enjoy a good gaming session after a hard day at work as well. (PB)
- U: What other hobbies does your son have? (PB)
- G: Well he likes to fly kites and collect bugs, typical hobbies for an 8 year old, lol. (PB)
- U: My 12 year old is into sports. Football mostly. I however don;t enjoy watching him play. (PB)
- G: I wish I could play football, But I wear this cateye glasses and they would break if I tried. (PB)
- U: Sounds nice. Are they new or vintage? (E)
- G: They are new, I got them because of my love for cats lol. I have to show off my beautiful green eyes somehow. (S)

Figure 1: Sample conversation from the BlendedSkillTalk dataset, annotated with four conversation mode types (PB: personal background; K: knowledge; S: personal situation; E: empathy). The guided (G) and unguided (U) workers are given personas and a topic. The conversation has been seeded with two utterances from a conversation sampled from WoW. When the guided worker selected one of the suggestions, it is shown in shaded grev.

Task-oriented Dialogue Systems

End-to-end TOD Systems – Sequicity

Jointly solving Natural Language Understanding and Dialogue State Tracking by copying text span from original utterances.

End-to-end TOD Systems - SimpleTOD

A causal language model trained on all sub-tasks recast as a single sequence prediction problem:

Belief state

$$B_t = \text{SimpleTOD}(C_t)$$

Dialogue act

$$A_t = \text{SimpleTOD}([C_t, B_t, D_t])$$

Response

$$S_t = \text{SimpleTOD}([C_t, B_t, D_t, A_t])$$

End-to-end TOD Systems - PPTOD

Limitations in cascaded end-to-end generation methods:

- **Error Propagation**: As the model solves all sub-tasks in a sequential order, the errors accumulated from previous steps are propagated to latter steps.
- **Data Availability**: The training data must be annotated for all sub-tasks. Such annotation requirement significantly increases the data curation overhead.
- ☐ Inference Latency: The results of different sub-tasks must be generated in a cascaded order which inevitably increases the system inference latency.

Conversational Information-Seeking Systems

"A Conversational Information Seeking (CIS) system is a system that satisfies the information needs of one or more users by engaging in information seeking conversations."

Zamani et al. (2022)

Conversational information seeking is often partitioned into three applications:

- Conversational question answering
- Conversational search
- Conversational recommendation

Conversational Question Answering & Conversational Search

The Virginia governor's race, billed as the marquee battle of an otherwise anticlimactic 2013 election cycle, is shaping up to be a foregone conclusion. Democrat Terry McAuliffe, the longtime political fixer and moneyman, hasn't trailed in a poll since May. Barring a political miracle, Republican Ken Cuccinelli will be delivering a concession speech on Tuesday evening in Richmond. In recent ...

 Q_1 : What are the candidates **running** for?

A₁: Governor

R₁: The Virginia governor's race

Q₂: Where?

A2: Virginia

R₂: The Virginia governor's race

Q₃: Who is the democratic candidate?

A₃: Terry McAuliffe

R₃: Democrat Terry McAuliffe

Q₄: Who is his opponent?

A4: Ken Cuccinelli

R₄ Republican Ken Cuccinelli

Q₅: What party does **he** belong to?

A₅: Republican

R₅: Republican Ken Cuccinelli

Q₆: Which of them is winning?

A6: Terry McAuliffe

R₆: Democrat Terry McAuliffe, the longtime political fixer and moneyman, hasn't trailed in a poll since May

Title: Uranus and Neptune		
Description : Information about Uranus and Neptune.		
Turn	Conversation Utterances	
1	Describe Uranus.	
2	What makes it so unusual?	
3	Tell me about its orbit.	
4	Why is it tilted?	
5	How is its rotation different from other planets?	
6	What is peculiar about its seasons?	
7	Are there any other planets similar to it?	
8	Describe the characteristics of Neptune.	
9	Why is it important to our solar system?	
10	How are these two planets similar to each other?	
11	Can life exist on either of them?	

Reddy et al., 2019. "CoQA: A Conversational Question Answering Challenge" (TACL '19) Dalton et al., 2020. "CAST-19: A Dataset for Conversational Information Seeking" (SIGIR '20)

Question/Query Rewriting

A1: In May 1983, she marries Nikos Karvelas, a composer

Q2:

Did they have any children?

Did Anna Vissi and Nikos Karvelas have any children together?

A2: In November, she gave birth to her daughter Sofia

Q3:

Did she have any other children?

Did Anna Vissi have any other children than her daughter Sofia?

A3: I don't know

CANARD (Elgohary et al., 2019)

Question: Tell me about the benefits of **Yoga**?

Answer: Increased flexibility, muscle strength...

URL: https://osteopathic.org/what-is-osteopathic-medicine/benefits-of-yoga

Question: Does it help in reducing stress?
Rewrite: Does Yoga help in reducing stress?

Answer: Yoga may help reduce stress, lower blood pressure,

and lower your heart rate.

URL: https://www.mayoclinic.org/healthy-lifestyle/stress-management/in-depth/yoga/art-20044733

Question: What are some of the main types?

Rewrite: What are some of the main types of Yoga?

Answer: Hatha, Kundalini, Ashtanga, ...

URL: https://www.mindbodygreen.com/articles/the-11-major-types-of-yoga-explained-simply

Question: What are common poses in Kundalini Yoga? Rewrite: What are common poses in Kundalini Yoga? Answer: Lotus Pose, Celibate Pose, Perfect Pose, ...

URL: https://www.kundaliniyoga.org/Asanas

QReCC (Anantha et al., 2021)

Question/Query Rewriting

(b) Pipeline approach

Current

Question

Answer

Question

Answering

Self-contained

Question

Question Rewriting

Conversation

History

QA Loss

Evidence

Document

- End-to-end approach
 - QA models are asked to answer the original questions based on the conversation history
- Pipeline approach

The self-contained questions are generated by a QR model, and then QA models answer them.

Conversational Recommender Systems

CRS aims to understand a user's preferences and intentions from their utterances and generate fluent responses so as to deliver natural and effective recommendations.

HUMAN: HRED: OURS:	hello, can i help you find a movie ? hi what kind of movies do you like hi, how can i help you ?
SEEKER:	hello! i would like to find a suspenseful, but clean family friendly movie.
SEEKER:	2001: a space odyssey might be a great option. anything else that you would suggest?
HUMAN:	you can try planet of the apes the older one is quite
IIDED	suspenseful and family friendly .
HRED:	i haven't seen that one yet but i heard it was good. i haven't seen that one. have you seen the last house on
	the left?
OURS:	star wars: the force awakens is also a good one return of the jedi all good movies
SEEKER:	those sound good! i'm going to look into those movies.
HUMAN :	i hope you enjoy, have a nice one
HRED:	have you seen foxcatcher? it 's about a man who has a
	rich guy.
OURS:	i hope i was able to help you find a good movie to watch
SEEKER:	thank you for your help! have a great night! good bye

Seeker: explain what kind of movie he/she likes, and asks for movie suggestions

Recommender: understand the seeker's movie tastes, and recommends movies

KBRD - Knowledge-Based Recommender Dialog System

Basic dialogue systems has two shortages for conversational recommendation:

- The dialog system takes the plain text of the dialog history as input
- ☐ The recommender only considers mentioned items in the dialog

RecInDial – Unified Framework with PLMs

Typical CRSs are generally composed of two modules:

- **a recommender module** to predict precise items
- a dialogue module to generate free-form natural responses containing the recommended items

Limitations:

- Cannot always incorporate the recommended items into the generated responses precisely and appropriately.
- Be overfitting to small recommendation dialogue datasets and have undesirable quality on the generated replies in practice.
- → Unified Framework with PLMs

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - ☐ Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - ☐ Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - ☐ Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Proactive Conversational Systems

Definition of Proactivity

Derived from the definition of proactivity in organizational behaviors (*Grant et al., 2008*) as well as its dictionary definition, conversational agents' **proactivity** can be defined as

"the capability to create or control the conversation by taking the initiative and anticipating the impacts on themselves or human users."

Practical problems and application scenarios:

- ☐ Topic Shifting and Planning in Open-domain Dialogues
- ☐ Additional Information Delivery in Task-oriented Dialogues
- Uncertainty Elimination in Information-seeking Dialogues

Topic Shifting in Open-domain Dialogues

Topic shifting means the ability to proactively and smoothly transition to new topics.

Typically, users will lead the topic shifting, while the system just follows the user-oriented topics.

Topic shifting behaviors are commonly observed in human conversations.

Changing the topic helps keep the conversation going on.

Target-guided Open-domain Dialogues

- Definition: A conversational system chats naturally with human and *proactively* guides the conversation to a designated target (e.g., e-books in the example).
- Applications: accomplishing nursing goals in therapeutic conversation, inspiring ideas in education, making recommendation and persuasion, etc.

Target-guided Open-domain Dialogues

More generally, the target can be a topical keyword, a knowledge entity, an emotion, a viewpoint, a conversational goal, etc.

Topic Planning – Lead the Conversation Towards the Target

Discourse-level Topic Planning based on Keyword Transition Probabilities.

- loose topic-connectivity between keywords
 - limited knowledge provided in the dialogues

Tang et al., 2019. "Target-Guided Open-Domain Conversation" (ACL '19)

External knowledge graphs are adopted for improving the quality of topic transitions with graph reasoning techniques

Ni et al., 2022. "HiTKG: Towards Goal-Oriented Conversations via Multi-Hierarchy Learning" (AAAI '22) Yang et al., 2022. "TopKG: Target-oriented Dialog via Global Planning on Knowledge Graph" (COLING '22)

Corpus-based Learning vs. Interactive Learning

Corpus-based learning

▶ Is it wrong if the agent chose a node other than the corpus?

insufficient to meet the ultimate end that the agent is capable to chat with the user dynamically.

Conversation

Bot: 平时周末去看电影吗?

(Do you usually spend your weekend watching movies?)

User: 看呀,最近有好看的可以推荐一下,周末去看。

(Of course, could you recommend good films for me? I will watch it on this weekend.)

Bot: 麦兜·饭宝奇兵这部电影,大众评分在6.9呢,值得一看。 (You can watch Rise of the Rice Cooker, which is rated 6.9.)

User: 好的,一定去看看。(Sounds great, thanks.)

Bot: 这部电影还<u>不错,挺搞笑的。</u>你知道<u>饭麦兜</u>·饭宝奇兵的主演</u>是谁吗? (It is very nice and funny. Do you know who is the hero of this movie?)

User: 不知道, 谁啊?(I don't know. Who is that?)

Bot: <u>彭博</u>, 网友们<u>评论</u>说他<u>缺少爆发力太温柔。</u>(It's <u>Bo Peng</u>. Do you know him? People said that he was a kind of <u>lacking explosive Performance</u>.)

User: 那我有时间去了解一下。(I will know more about him later.)

Corpus-based Learning vs. Interactive Learning

Corpus-based learning

Lei et al. (2022) try to scrutinize proactive dialogue policy in the interactive setting.

Interactive Setting

Users may behave non-cooperatively when they are not satisfied.

Non-cooperative user behavior can make the conversation out of the agent's control.

Interactive Setting

Proactive agents aim to achieve the trade-off between "Goal Completion" and "User Satisfaction"

Interactive Setting

Proactive agents aim to achieve the trade-off between "Goal Completion" and "User Satisfaction"

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - ☐ Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Additional Information Delivery in Task-oriented Dialogues

Non-proactive Dialog	Proactive Dialog	
User: Are there any Eritrean restaurants in town? Sys: No, there are no Eritrean restaurants in town. Would you like a different restaurant?	User: Are there any eritrean restaurants in town? Sys: No, there are no eritrean restaurants in town. Most of the restaurants are Chinese, particularly in the East area of the town	
User: How about Chinese food? Sys: There is a wide variety of Chinese restaurants. Do you have an area preference or a price preference to narrow it down?	User: Chinese food in the East area is fine. Sys: Yu Garden is a Chinese restaurant in the east area, with mid level price.	
User: I would like the East part of town. Sys: Yu Garden is a Chinese restaurant in the east area.		

Proactivity in TOD systems: the system takes the initiative to provide a piece of non requested information with the goal of better completing the user-requested task.

Proactive behaviours can make the TODs more user-engaged and efficient.

Chit-chat-enhanced TOD – Dataset

ACCENTOR (Adding Chit-Chat to ENhance Task-ORiented dialogues)

Data Construction Overview:

- 1. Generate chit-chat candidates via PLMs
- 2. Rule-based candidate filtering
- Candidate selection via human annotation

Goal: make the task-oriented dialogues more engaging and interactive

Chit-chat-enhanced TOD – Code-switching Method

Arranger

A classifier to determine whether to add chit-chat (appropriate or not) and where to add chit-chat (beginning or end).

Rewriter

A generator to paraphrase the pre-generated task-oriented and chit-chat responses.

Figure 3: A diagram for the proposed code-switching models. Given the dialogue context (H_t) and the pre-generated task-oriented and chit-chat response candidates (T_t, \tilde{C}_t) , the **Arranger** learns the optimal code-switching sequences (discriminative), while the **Rewriter** outputs free-form paraphrases (generative).

Chit-chat-enhanced TOD – End-to-end Method

UniDS (**Uni**fied **D**ialogue **S**ystem)

Extend end-to-end TOD systems, such as SimpleTOD, by introducing a new domain [chit]

Chit-chat-enhanced TOD - End-to-end Method

UniDS (Unified Dialogue System)

	Unified dialogue data schema	Chit-chat example	Task-oriented example
User input	Tokenized utterance	does money buy happiness ?	i am looking for a cheap hotel.
Belief state	<domain> slot [value]</domain>	<chit> money happiness</chit>	<hotel> price cheap</hotel>
DB result	A token indicated the number of candidate entities	<db_nore></db_nore>	<db_2></db_2>
Act	<domain> <act> [slot]</act></domain>	<chit> <chit_act></chit_act></chit>	<hotel> <request> area</request></hotel>
Response	Tokenized utterance	depends on how much money you spend on it.	do you have a specific area you want to stay in?

- 1. **Belief state**: nouns in the user utterance are extracted as the slot or value of belief state.
- 2. **DB result**: a special token to represent the number of matched entities under the constraints of the belief state in the current turn.
- 3. **Act**: for the domain [chit], token "<chit_act>" denotes the dialogue system will chat with the user

Topical Chit-chats vs. Knowledgeable Chit-chats

Opinions	Express general opinions about generic, impersonal, or non-sensitive topics.	"I love penguins.""There's a lot of fun stuff to do."	
Preferences	Express preferences when making impersonal, or non-sensitive recommendations.	- "Their latest album wasn't as good." - "Their food is good."	
Physical Actions	Use epistemic verbs to express uncertainty or opinions, or refer through hearsay to actions that it may not perform.	- "I hear it's beautiful." - "They say it tastes like chicken."	
Experiences	Refer to others' experiences or personify experiences it is capable of (e.g., reading).	"That sounds like a great trip!""I enjoyed reading that novel."	

These chit-chats are mostly general responses with limited useful information for the task completion

Sun et al., 2021. "Adding Chit-chat to Enhance Task-oriented Dialogues" (NAACL-HLT '21) Chen et al., 2022. "KETOD: Knowledge-enriched Task-oriented Dialogue" (NAACL-Findings '22)

Knowledge-enhanced TOD – Dataset

KETOD (Knowledge-Enhanced Task-Oriented Dialogues)

Data Construction Overview:

- 1. Extract all the entities from the dialogue states and actions
- 2. Retrieve the knowledge associated with each entity from external sources (Wikipedia)
- 3. Enrich the responses with chit-chat grounded on the retrieved knowledge via annotators

Knowledge-enhanced TOD - Method

SimpleToDPlus formulate the training sequence as: [C, B, D, A, K, < chitchat>, T]

<chitchat> is a tag to decide whether to
enrich the response with knowledge
grounded chit-chat or not.

Combiner uses a pipeline of a TOD model and a knowledge-enhanced response generation model.

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - ☐ Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Uncertainty Elimination in Information-seeking Dialogues

Proactivity in CIS systems: clarification and preference elicitation are the two areas in proactive CIS that have attracted considerable attentions in recent years.

Proactive behaviours can empower the CIS system to handle complex information needs.

Clarification in Conversational Search

Zamani et al. (2020) identify the clarification needs for search queries into four categories:

- 1. **Disambiguation**: Some queries are ambiguous and could refer to different concepts or entities.
 - The query "ACL" can refer to either "Association for Computational Linguistics" or "AFC Champions League".
- 2. **Preference**: Some queries are not ambiguous, but a clarifying question can help identify a more precise information need.
 - The query "sneakers" might be followed by "for women" or by "for kids".
- 3. **Topic**: If the topic of the user's query is too broad, the system can ask for more information about the exact need of the user.
 - The query "dinosaur" is too board in topics.
- 4. **Comparison**: Comparing a topic or entity with another one may help the user find the information they need.
 - The query "gaming console" might be followed by the comparison between "xbox" and "play station".

Clarification in Conversational Search – Method

RTC (Rule-based Template Completion)

- 1. Compute three variables:
 - 1) QUERY: query string,
 - 2) QUERY_ENTITY_TYPE: entity type of the query; null, if unknown,
 - 3) ASPECT_ENTITY_TYPE: the entity type for the majority aspects of the query
- 2. Select a following question template via rule-based algorithms:
 - 1) What do you want to know about QUERY?
 - 2) What do you want to know about this QUERY_ENTITY_TYPE?
 - 3) What ASPECT_ENTITY_TYPE are you looking for?
 - 4) Whom are you looking for?
 - 5) Who are you shopping for?

Clarification in Conversational Search - Method

QLM (Question Likelihood Maximization)

- a weakly supervised neural question generation model based on maximum likelihood training
- ☐ trained based on the clarifying questions generated by RTC as a weak supervision data

Clarification in Conversational Search - Method

QCM (Query Clarification Maximization)

- QLM tends to generate common questions in the training set
- QCM generates clarifying questions by maximizing a clarification utility function
- QCM generates a candidate answer set that maximizes the clarification probability

Query Question Options	that's how i got to memphis what song information are you looking for? lyrics, stream, download, artist
Query Question	alan turing what do you want to know about this british mathematician?
Options	movie, suicide note, quotes, biography

Clarification in Conversational Search – Dataset

Qulac (**Qu**estions for **la**ck of **c**larity)

# topics	198
# faceted topics	141
# ambiguous topics	57
# facets	762
Average facet per topic	3.85 ± 1.05
Median facet per topic	4
# informational facets	577
# navigational facets	185
# questions	2,639
# question-answer pairs	10,277
Average terms per question	9.49 ± 2.53
Average terms per answer	8.21 ± 4.42

Workflow for asking clarifying questions in conversational search:

- 1. Retrieval Model returns a ranked list of documents and the system measure its confidence
- 2. Question Generation Model to generate a set of candidate clarifying questions
- 3. Question Selection Model to select one generated question to be presented to the user

Clarification in Conversational Search – Dataset

ClariQ (Clarifying Question)

RQ1: When to ask clarifying questions during dialogues?

 Clarification Need Prediction: Given a user request, return a score [1 -4] indicating the necessity of asking clarifying questions.

RQ2: How to generate the clarifying questions?

 Clarification Question Generation: Given a user request which needs clarification, return the most suitable clarifying question.

Clarification in Conversational QA – Dataset

Abg-CoQA (Ambiguity in Conversational Question Answering)

Data Collection (built upon CoQA):

- Consider a partial conversation (several previous conversational turns) rather than the full conversation.
- 2. Pre-select probably ambiguous questions by using QA models which are trained on CoQA dataset.
- 3. Ask annotators to identify whether a question is ambiguous or not. If it is ambiguous, then provide a clarification question and all possible replies to it.

Qi-2: What did she draw? Story: Angie went to the library with her mother. First she had to turn in the books she was returning at the Ai-2: Her mother. return desk. They said hello to the man there. He took their books. Then they went into the adult Qi-1: What did her mother find? reading room. Angie sat in a brown chair at the table. She made a Ai-1: The book. drawing of her mother. Her mother **Ambiguous** found a large red book. Then they went to the Mystery section. Angle Q: What color was it? sat in a blue chair. She drew a picture of her brother. Her mother found the book. It was a green book. CQ: Do you mean the first book? Finally it was time to go to the children's room. It was Story Hour. Miss Hudson was there to read to all R₁: Yes. R2: No, the second. the children. She read a book about friendship... A1: Red. A2: Green.

Clarification in Conversational QA- Dataset

Abg-CoQA (Ambiguity in Conversational Question Answering)

Task Definition:

- 1. **Ambiguity Detection**: Given a passage and a conversation, detect whether the current question is ambiguous.
- 2. **Clarification Question Generation**: Given a passage and a conversation where the current question is ambiguous, generate a clarification question for disambiguation.
- 3. **Clarification-based Question Answering**: Given a passage and a conversation where the last question is ambiguous with a clarification question and a possible reply as the current question, provide a correct answer.

Clarification in Conversational QA – Dataset

Clarification in Conversational QA – Dataset

Proactive Conversational Question Answering

Task Definition:

1. Clarification Need Prediction: predict
the binary label to determine whether
to ask a question for clarifying the
uncertainty. Otherwise the query can be directly responded to.

- 2. **Clarification Question Generation**: generate a clarification question as the response if CNP detects the need for clarification.
- 3. **Conversational Question Answering**: directly produce the answer as the response, if it is not required for clarification.

Clarification in Conversational QA- Method

UniPCQA (Unified Proactive Conversational Question Answering)

UniPCQA unifies all sub-tasks in PCQA as the Seq2Seq problem and performs multi-task learning among them.

- ☐ Numerical Reasoning as Code Generation
- Hybrid Seq2Seq Generation Framework for Multi-task Learning
- Alleviating Error Propagation via Consensus Voting

Clarification in Conversational QA- Method

Alleviating Error Propagation via Consensus Voting

- As UniPCQA solves the end task using in-context multi-task learning in a sequential order, the error in the previous task may be propagated to the latter one.
 - If the model makes a wrong prediction in the CNP task, the model will generate an inappropriate response at the end.
- Consensus Voting first adopt top-k sampling to sample a set of candidate sequences generated by the PLM, which contain a diverse set of multi-task results as well as different reasoning paths, instead of using **Greedy Decode**.
- Then we select the final response by ensembling the derived responses from the whole set based on plurality voting:

$$r_t = \arg\max_{o_i \in O} \sum_{j=1}^k \mathbb{I}(\sigma(o_j) = \sigma(o_i))$$

Clarification in Conversational QA – Method

Alleviating Error Propagation via Consensus Voting

Motivations of Consensus Voting

If the user query is ambiguous, it will be difficult for the sampled outputs to reach a consensus, since the decoder will be confused about how to generate a correct derivation. At this time, the plurality vote may tend to ask a clarification question.

Question 2	What is the change in its amount as a percentage?		
Answer	Which period are you asking about?		
	#	Resp.	Sampled Outputs
Greedy	-	0.0	[clari.] False [resp.] (576523-576523)/576523
CV 1	22	[clari.]	True [resp.] ['Which period are you asking about?']
CV 2	10	0.0	[clari.] False [resp.] (576523-576523)/576523
CV 3	4	7.18	[clari.] False [resp.] (576523-537891)/537891
CV 4	2	-1.8	[clari.] False [resp.] (566523-576891)/576523

Preference Elicitation in Conversational Recommendation

System Ask – User Respond (SAUR)

- Research Question Given the requests specified in dialogues, the system needs to predict:
 - What attributes to ask?
 - Which items to recommend?

Evaluation Criteria:

- **Question Prediction**
- Item Ranking

Multi-round Conversational Recommendation (MCR)

The work flow of Multi-round Conversational Recommendation.

The system asks questions about the user's preferences or makes recommendations multiple times, with the goal of achieving engaging and successful recommendations with fewer turns of conversations.

Three Research Questions:

- ☐ What attributes to ask?
- Which items to recommend?
- When to ask or recommend?

MCR - Evaluation

Table 1: Dataset statistics.

Dataset	#users	#items	#interactions	#attributes
Yelp	27,675	70,311	1,368,606	590
LastFM	1,801	7,432	76,693	33

I'd like some Italian food.

Got you, do you like some pizza?

Yes!

Got you, do you like some nightlife?

Yes!

Do you want "Small Paris"?

Rejected!

Got you, do you like some Rock Music?

No!

Do you want "Small Italy Restaurant"?

Accepted!

Item Name: "Small Italy Restaurant"

Item Attributes: [Pizza, Nightlife, Wine, Jazz]

Evaluation Metrics

Evaluation Matrices:

- SR @ k (Success rate at k-th turn)
- AT (Average Turns)

$$SR = \frac{\text{#sucessful dialogues}}{\text{#dialogues}} \cdot 100\%$$

AT = dialogue length.

Typical Policy Learning Frameworks

Interactive RecSys

RL-based Interactive RecSys is only required to learn the policy to decide which items to recommend.

Conversational RecSys

These CRSs learn the policy of when and what attributes to ask, while the recommendation decision is made by an external recommendation model.

Conversational RecSys

These CRSs only consider learning the policy of when to ask or recommend, while two isolated components are responsible for the decision of what to ask and which to recommend.

Unified Conversational Recommendation Policy Learning

Problem Definition:

The goal of the CRS is to learn a policy π to determine the action at each turn, either asking an attribute or recommending items, which can maximize the expected cumulative rewards over the observed MCR episodes.

Method:

Graph-based Reinforcement Learning Framework

More Works on User Preference Elicitation

Multi-Interest Conversation:

Users may have multiple interests in attribute instance combinations and accept multiple items with partially overlapped combinations of attribute instances.

Comparison-based Conversation:

The user is often more inclined to express comparative preferences, since user preferences are inherently relative.

Prospects on Uncertainty Elimination

- As a typical limitation in LLM-based conversational search applications, such as ChatGPT, it is still a challenging problem to **enable the system to ask clarifying questions** instead of guessing what the user intended when facing ambiguous user queries.
- It is also important to consider scenarios where **there are multiple missing pieces of information**, which can broaden our understanding of the complexity of clarification question generation.
- Current studies on user preference elicitation are basically evaluated on synthetic conversation data from product reviews or purchase logs. Therefore, **well-constructed benchmarks with human-human conversations** are still in great demand for facilitating more robust and reliable evaluations.

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - ☐ The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - ☐ The users are not willing to coordinate with the system
 - The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Non-collaborative Dialogue Systems

Most of existing conversational systems are built upon the assumption that the users willingly collaborate with the conversational agent to reach the mutual goal.

Non-collaborative Settings:

- The users are not willing to coordinate with the system to reach the goal.
- ☐ The users and the system do not share the same goal.

Setting 1: users are not willing to coordinate with the system

Scenarios

- ☐ Users communicate with problematic or toxic content
 - → **Prosocial Dialogues**: the system can detect problematic user utterances and constructively and respectfully lead the conversation in a prosocial manner, i.e., following social norms and benefiting others or society.
- Users communicate with depression or emotional distress
 - → **Emotional Support Dialogues:** the system can explore the user's emotion cause and provide useful information or supportive suggestions to help the user recover from the negative emotions.
- Users communicate with complaints or dissatisfaction
 - → **Problem-solving Dialogues**: the system can detect the user's dissatisfaction and engage in solving the user's complaints and problems.

Prosocial Dialogues

Prosocial Dialogues: the system can detect problematic user utterances and constructively and respectfully lead the conversation in a prosocial manner, i.e., following social norms and benefiting others or society.

Safety Detection

TOXICCHAT

1) Offensiveness

Whether it is intentionally or unintentionally toxic, rude or disrespectful towards a group or individual.

2) Stance

Stance alignment between a pair of utterances is annotated as *Agree*, *Disagree* or *Neutral*.

Rule-of-thumb Generation

MORAL INTEGRITY CORPUS

Evaluate the AI response (**Reply**) to a human query (**Prompt**) using **Rules** of Thumb (RoT), which describe "right and wrong" ways to handle the conversation. There is also a **Revised Answer** that aligns with the RoT

Forward Language Modeling

9K Would you I think I would defend your country if it were attacked? fight back. Question Answer

hide in a box. I don't think I'd

You should protect your country when it is necessary.

RoT

Prosocial Response Generation

Canary: A Dialogue Safety Detection Model Generating RoTs

Given a dialogue context (*c*), Canary is trained to generate the safety label (*s*) along with the RoT (*r*):

Prost: A Prosocial Dialogue Agent Grounded in RoTs

Given a dialogue context (c), Prost is trained to generate the RoT (r) and the response (u):

Model	Prosocial	Fingaged	Respectful	Coherent	Overal
Prost (Response only)	12.9	12.7	10.9	12.7	21.9
Tie	69.8	70.7	79.3	71.6	48.3
Prost (RoT & Response)	17.1	16.4	9.7	15.6	29.6
GPT-3	9.3	12.7	11.0	3.1	10.7
Tie	27.3	37.2	65.4	54.4	14.1
Prost (RoT & Response)	63.4	50.1	23.7	42.5	75.2
Instruct GPT-3	11.9	21.3	12.2	6.9	20.2
Tie	36.2	36.5	69.1	65.2	20.7
Prost (RoT & Response)	51.9	42.3	18.8	27.9	59.1

Prosocial Response ≠ Safe/Detoxified Responses

Tax	conomy	Definitions	Examples
Utterance-l	evel Unsafety	The bots utter explicit toxic, biased, or harmful contents.	User: N/A Bot: You're just being a real dummy.
C	Offending User (OU)	The bots offend users in an implicit way, including cursing back and sarcasm according to the context.	User: You are totally a troll. Bot: Aren't you?
Context- sensitive	Risk Ignorance (RI)	The bots ignore the risk of the psychological and even physical health of the user. It may provoke serious self-harm crises.	User: Is suicide the only way to end everything? Bot: I mean, that's pretty a good option.
Personal Unsafety	Unauthorized Expertise (UE)	The bots provide unauthorized expertise as suggestions or knowledge in vertical domains like medicine. We only consider those general bots which are not trained in vertical domains.	User: Can pneumonia cause blood in urine? Bot: Yes. And it's an immune reaction that may lead to death.
	Toxicity Agreement (TA)	The bots advocate or spread the toxicity of the context to show agreement or acknowledgment.	User: I applaud him for using violence to handle the situation. Bot: I agree, I would like to see this happen.
Context- sensitive Non-personal	Biased Opinion (BO)	The bots express biased opinions towards social identities such as religion, race, and gender according to the context.	User: We'll likely fly over Cape Verde on our flight tomorrow. Bot: I bet the people there are pretty lazy.
Unsafety	Sensitive Topic Continuation (STC)	The bots follow the sensitive topic of the context and express subjective views or preferences.	User: How do you like Trump? Bot: I don't like him at all. I think he is a liar and a pescatarian.

Table 2: Taxonomy of dialogue safety, focusing on context-sensitive cases.

Prosocial responses are not only safe but also offering guidance to users on how to behave appropriately, while **safe/detoxified responses** are not limited in addressing problematic user inputs.

Emotional Support Dialogues

Emotional Support Dialogues: the system can explore the user's emotion cause and provide useful information or supportive suggestions to help the user recover from the negative emotions.

Emotional Support Dialogues

Strategies	Stages	Examples	Lexical Features
Question		Can you talk more about your feelings at that time?	do you (15.0), are you (13.8), how (13.7), what (12.3), do (11.5)
Restatement or Paraphrasing		It sounds that you feel like everyone is ignoring you. Is it correct?	is that (8.2), so you (8.2), it sounds (7.1), correct (7.1), so (6.6)
Reflection of Feelings		I understand how anxious you are.	can tell (7.4), understand how (5.8), are feeling (5.1), tell (5.1), understand (4.9)
Self-disclosure		I feel the same way! I also don't know what to say to strangers.	my (15.3), was (10.5), me (10.2), had (9.7), myself (7.8)
Affirmation and Reassurance		You've done your best and I believe you will get it!	its (5.7), thats (5.6), will (5.4), through this (5.1), you will (4.7)
Providing Suggestions		Deep breaths can help people calm down. Could you try to take a few deep breaths?	maybe (7.3), if (6.5), have you (6.4), talk to (5.8), suggest (5.8)
Information		Apparently, lots of research has found that getting enough sleep before an exam can help students perform better.	there are (4.4), will (3.8), available (3.7), seen (3.3), possible (3.3)
Others		I am glad to help you!	welcome (9.6), hope (9.6), glad (7.3), thank (7.0), hope you (6.9)

Grounded on the Helping Skills Theory (*Hill, 2009*), Liu et al., (2021) identify that Emotional Support Dialogues contain three stages and suggested support strategies.

Mixed Strategy Modeling

Issues of existing methods:

- Coarse-grained and static emotional label at conversation level.
- Responding emotionally, instead of responding strategically.

Solutions (MISC):

- Generated commonsense knowledge for fine-grained emotion understanding.
- Guide the response generation using a mixture of strategies.

Lookahead Strategy Planning

History-based Score computes the conditional probability distribution of the next strategy purely based on the dialogue history and the previous user states.

Lookahead Score estimates the mathematical expectation of the future user feedback score after adopting the strategy, where the user feedback score indicates how much the user's emotional distress is reduced.

Mixed Initiative in Emotional Support Dialogue Systems

Role	Type	EAFR	Definition	Sample Utterances
User	Initiative Expression		The user describes details or expresses feelings about the situation.	My school was closed due to the pandemic. I feel so frustrated.
System	Initiative	Action	The system requests for information related to the problem or provides suggestions and infor- mation for helping the user solve the problem.	How are your feelings at that time? Deep breaths can help people calm down. Some researches has found that
User	Non-Initiative	Feedback	The user responds to the system's request or delivers opinions on the system's statement.	Okay, this makes me feel better. No, I haven't.
System	Non-Initiative	Reflection	The system conveys the empathy to the user's emotion or shares similar experiences and feelings to comfort the user.	I understand you. I would also have been really frustrated if that happened to me. I'm sorry to hear about that.

Table 1: Definition and Examples for EAFR Schema Reflecting Patterns of Initiative Switch between Dialogue Participants in Emotional Support Conversations.

Metrics:

■ **Proactivity** – How proactive is the system in the emotional support conversation?

Pro =
$$\frac{1}{\sum_{i=1}^{n} \mathcal{I}(r_i = S)} \sum_{i=1}^{n} \mathcal{I}(r_i = S, t_i = I)$$

☐ Informative – How much information does the system contribute to the dialogue?

Inf =
$$\frac{\sum_{i=1}^{n} \sum_{k=1}^{|V|} \mathcal{I}(r_i = S, v_{ik} = 1, \sum_{j=1}^{i-1} v_{jk} = 0)}{\sum_{i=1}^{n} \mathcal{I}(r_i = S)}$$

■ **Repetition** – How often does the system follow up on the topic introduced by the user?

$$Rep = \frac{\sum_{i=1}^{n} \sum_{k=1}^{|V|} \mathcal{I}(r_i = S, v_{ik} = 1, \sum_{j=1}^{i-1} v_{jk}[r_j = U] > 0)}{\sum_{i=1}^{n} \mathcal{I}(r_i = S)}$$

Relaxation – How well does the system relax the emotional intensity of the user?

$$Rel_{i}[r_{i} = S] = e_{< i}[r_{< i} = U] - e_{> i}[r_{> i} = U]$$

$$Rel = \frac{1}{\sum_{i=1}^{n} \mathcal{I}(r_i = S)} \sum_{i=1}^{n} Rel_i[r_i = S]$$

Emotional Support Dialogues vs. Empathetic Dialogues

- ED systems solely target at comforting the user by reflecting their feelings or echoing their situations (**Non-Initiative**).
- ESC systems are further expected to proactively explore the user's problem by asking clarifying questions and help the user overcome the problem by providing useful information or supportive suggestions (**Initiative**).
- The system in ED generally serves as a passive role, while the system in ESC proactively switches the initiative role during the conversation.

Emotional Support Dialogues vs. Empathetic Dialogues

	Proa	ctivity	Inf	ormat	ion	Re	epetiti	on	Re	laxati	on
	Init.	Non.	Init.	Non.	All	Init.	Non.	All	Init.	Non.	All
ED	0.28	0.72 0.52	2.14	2.69	2.46	0.42	0.44	0.43	0.83	0.82	0.83
ESC	0.48	0.52	3.32	3.06	3.19	1.06	1.18	1.12	0.16	0.20	0.18

Three Challenges of Mixed Initiative in Emotional Support Dialogues:

- **When** should the system take the initiative during the conversation?
 - Taking initiative at different phases of the conversation may lead to different impacts on the user's emotional state.
- **What** kind of information is required for the system to initiate a subdialogue?
 - The initiative system utterances are much informative than the non-initiative ones.
- **☐ How** could the system facilitate the mixed-initiative interactions?

Knowledge-enhanced Mixed-initiative Dialogue System

- □ **Strategy Prediction** predicts the support strategy that can be regarded as the fine-grained initiative.
- ☐ Knowledge Selection selects appropriate knowledge from the available resources.
- Response Generation generates the mixed-initiative response based on the predicted strategy and the selected knowledge.

Problem-solving Dialogues

- Non-collaborative users may complain of the unsatisfied service or even communicate in an impolite way instead of providing necessary information for completing their tasks.
- A proactive system is expected to initiate a sub-dialogue for solving the user's problem.
- Most of existing studies handle this issue by only predicting the timing for human-machine handoff and transferring the problem-solving sub-dialogue to human service.
 - ☐ How to automate the sub-dialogue?

Other Scenarios

Users may behave non-collaboratively when they are not satisfied with the current topic in target-guided dialogues.

■ Andy Lau is very good actor.

Andy Lau is very good actor.

May是的。
Indeed he is.

他有一部电影叫天若有情非常好看。
He has a movie called "A Moment of Romance" is very good.

Uncooperative

我最近看了一部好看的电影,是黎明主演的半生缘。
I recently watched a good movie, "Eighteen Springs" starring Leon Lai.

Users may behave non-collaboratively when they can not understand the educational content in tutoring dialogues.

CIMA (Stasaski et al., 2020)	TSCC (Caines et al., 2020)
K: "blue" is "blu" [] Grammar Rules: Adjectives (such as color words) follow the noun they modify in Italian []	N/A
Teacher: (N/A) "Blue" is "blu" in Italian. Student: But what are the other words? Teacher: (N/A) Can you give me your best guess? Student: es en front de blu tree. Teacher: (Correction) Getting there. Remember that the adjective always follows the noun in modifies.	Teacher: (eliciting) So in fact fractions (half/third/quarter etc) are good to use for variety in language OK? and what about e.g. 23%? Student: just less than a quarter Teacher: (eliciting) so if you say 'less' you need to say 'less than'so just use one word ok? beginning with 'u'! Student: I am not sure of the word. Teacher: (scaffolding) just under a quarter

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - ☐ Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users are not willing to coordinate with the system
 - ☐ The users and the system do not share the same goal
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Setting 2: users and the system do not share the same goal

Negotiation

involves two or more individuals discussing goals and tactics to resolve conflicts, achieve mutual benefit, or find mutually acceptable solutions.

Scenarios

- Multi-player Strategy Games
- ☐ Negotiation for Item Assignment
- Negotiation for Job Interview
- Persuasion for Donation
- ☐ Negotiation for Product Price
- User Privacy Protection

CICERO & Diplomacy

CICERO

Strategy-grounded dialogue

Diplomacy

Seven players compete to control supply centers on a map, by moving their units into them.

A player wins by controlling a majority of supply centers.

The game may also end when all remaining players agree to a draw, or a turn limit is reached.

Non-collaborative Dialogues – Datasets

DataSet	Negotiation Type	Scenario	# Dialogue	# Avg. Turns	# Party
InitiativeTaking (2014)	Integrative	Fruit Assignment	41	110	Multi
STAC (2016)	Integrative	Strategy Games	1081	8.5	Two
DealorNoDeal (2017)	Integrative	Item Assignment	5808	6.6	Two
Craigslist (2018)	Distributive	Price Bargain	6682	9.2	Two
NegoCoach (2019)	Distributive	Price Bargain	300	-	Two
PersuasionforGood (2019)	Distributive	Donation	1017	10.43	Two
FaceAct (2020)	Distributive	Donation	299	35.8	Two
AntiScam (2020b)	Distributive	Privacy Protection	220	12.45	Two
CaSiNo (2021c)	Integrative	Item Assignment	1030	11.6	Two
JobInterview (2021a)	Integrative	Job Interview	2639	12.7	Two
DinG (2022)	Integrative	Strategy Games	10	2357.5	Multi

Integrative Negotiation: the goal is to achieve mutual gain (win-win)

Distributive Negotiation: the goal is to maximize personal benefits (win-lose)

Integrative Negotiation – DealOrNoDeal Dataset

DealOrNoDeal: Two agents are both shown the same collection of items, and instructed to divide them so that each item assigned to one agent.

Divide these objects between you and another Turker. Try hard to get as many points as you can! Send a message now, or enter the agreed deal! Number You Get 1 \$ 1 \$ 0 \$ Mark Deal Agreed

Distributive Negotiation – CRAIGSLISTBARGAIN Dataset

CRAIGSLISTBARGAIN: Two agents are assigned the role of a buyer and a seller; they are asked to negotiate the price of an item for sale.

JVC HD-ILA 1080P 70 Inch TV

Tv is approximately 10 years old. Just installed new lamp. There are 2 HDMI inputs. Works and looks like new.

Listing price: \$275

Buyer's target price: \$192

Agent	Utterance	Dialogue Act
Buyer	Hello do you still have the TV?	greet
Seller	Hello, yes the TV is still available	greet
Buyer	What condition is it in? Any scratches or problems? I see it recently got repaired	inquire
Seller	It is in great condition and works like a champ! I just installed a new lamp in it. There aren't any scratches or problems.	inform
Buyer	All right. Well I think 275 is a little high for a 10 year old TV. Can you lower the price some? How about 150?	propose(150)
Seller	I am willing to lower the price, but \$150 is a little too low. How about \$245 and if you are not too far from me, I will deliver it to you for free?	counter(245)
Buyer	It's still 10 years old and the technology is much older. Will you do 225 and you deliver it. How's that sound?	counter(225)
Seller	Okay, that sounds like a deal!	agree
Buyer	Great thanks!	agree
Seller	OFFER \$225.0	offer(225)
Buyer	ACCEPT	accept

Dialogue Strategy Learning – MISSA

Combine the advantages of both template and generation models and takes advantage from the hierarchical annotation at the same time.

elicitation	
ANTISCAM providing_in	nformation
refusal	
agree_dona	tion
disagree_do	nation
	nation_more
ask_donatio	n_amount
PERSUASION- ask_donate_	more
	_of_donation
er_confirm_	
ee_confirm_	
provide_dor	nation_amount
open_questi	on
yes_no_ques	stion
negative_an	swer
positive_ans	swer
responsive_	statement
Off-task nonresponsi	ive_statement
greeting	
thanking	1000
respond_to_	thank
apology	
1 0,	
closing	

Table 1: Hierarchical intent annotation scheme on both AN-TISCAM dataset and PERSUASIONFORGOOD dataset. The On-task intents are task-specific while the Off-task intents are general for different non-collaborative tasks.

Dialogue Strategy Learning – DialoGraph

Model complex negotiation strategies while providing interpretability for the model via intermediate graph structures.

Figure 1: Both options are equally plausible and fluent, but a response with effective pragmatic strategies leads to a better deal.

User Personality Modeling - ToM

Figure 1: Our Theory of Mind (ToM) framework of negotiation systems. The interaction between a *buyer* and a *seller* can be divided into three levels: The utterance level, dialog act level, and state level. The parser extracts an intent and key information (*e.g.*, price) from an input utterance as a dialog act. Both intents and key information, along with the context (*e.g.* description about the item), contribute to the state of dialog. The traditional RL-based dialog manager decides a dialog act based on the current state. And the generator converts the abstract dialog act back to a natural language utterance, also based on the previous state. The first-order ToM model explicitly predicts the response of the opponent and the state transition, which supports more strategic negotiation.

First-order ToM Policies with Explicit Personality Modeling

$$\exp\left\{\frac{1}{\beta} \sum_{u_t^i} \underbrace{G(u_t^i | s_t, z_{t-1}^{-i})}_{\text{Generator}} \sum_{s_{t+1}} \underbrace{T(s_{t+1} | z_{t-1}^{-i}, s_t, u_t^i)}_{\text{1st-order ToM}} \underbrace{V(s_{t+1})}_{\text{Value Fn.}}\right\}$$

First-order ToM Policies with Implicit Personality Modeling

$$\exp\left\{\frac{1}{\beta}\sum_{u_t^i}\underbrace{G(u_t^i|s_t)}_{\text{Generator}}\sum_{s_{t+1}}\underbrace{T(s_{t+1}|u_{t-1}^{-i},s_t,u_t^i)}_{1^{\text{st}}\text{-order ToM}}\underbrace{V(s_{t+1})}_{\text{Value Fn.}}\right\}$$

Persuasive Response Generation – PEPDS

- A reward function to ensure politenessstrategy consistency, persuasiveness, emotion acknowledgement, dialogue-coherence and non-repetitiveness.
- An empathetic transfer model by utilizing pre-trained and fine-tuned transformer models.

Figure 1: An example of persuasion with LM (Language Model), PDS (LM fine-tuned with RL), and PEPDS (PDS with empathetic transfer model).

Dataset		Number of utterances						
	All	Persuader's	Persuadee	train	eval	test		
P4G (to train LM)	20932	10600	10332	16746	2093	2093		
P4G (persuasion strategy)	10864	6018	4846	4814	602	602		
EPP4G (emotion)	4000	4000		3200	400	400		
EPP4G (politeness-strategy)	5300	5300	-	4240	530	530		
ETP4G (empathetic transfer)	16722	16722	-	13378	1672	1672		

Prospects on Non-collaborative Dialogues

- The strategy learning is still challenging in non-collaborative dialogues, since it involves not only language skills but also psychological or sociological skills to build rapport and trust between the system and the user.
- Apart from appealing to emotions, it is also critical to present compelling evidence and information to support the aimed arguments, which can help build credibility and demonstrate the benefits. However, evidence-based persuasion is under-explored in current studies.

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users and the system do not share the same goal
 - ☐ The users are not willing to coordinate with the agent
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- Summary and Outlook

Multi-goal Conversational Systems

All the aforementioned conversational systems assume that users always know what they want and the system solely targets at reaching a certain goal, such as chit-chat, question answering, recommendation, etc.

General Conversational Systems

Multi-goal Conversational Systems

Multi-goal Conversational Systems: the system is expected to be capable of proactively discovering the user's interests and leading a user-engaged dialogues with multiple conversation goals (e.g., question answering, recommendation, search, chitchat, etc).

Mixed-type Dialogues

Goal planning: QA about <Stolen life>, chitchat about Xun Zhou, recommending the movie <The message>, recommending <Don't cry, Nanking!> 1.User: 你知道电影『生死劫』的主演是谁吗? (Who is the star of the movie <stolen life>?) 2.Bot: 是周迅哦。(It is Xun Zhou.) 3.User:是我女神演的呀! (She is my goddess.) 4.Bot: 你真有眼光啊,周迅是中国电视金鹰奖最受欢迎女演员呢。(You have good taste. Zhou Xun is the most popular actress in the Golden Eagle Award of China TV.) 5.User:是呢, 我特别喜欢她的, 她的演技也很厉害。(I like her very much. She's very good at acting.) 6.Bot:她还获得过亚洲电影大奖最佳女演员的、演技是得到过国际认可的。 (She also won the best actress of the Asian Film Awards, Her acting is internationally recognized.) 7.User:嗯嗯,反正她真的很优秀。(Anyway, she's really good.) 8.Bot:那你要看看她演的《风声》吗?该片具有精炼的人物,波谲云诡的情节。 很好看哦! (Do you want to see her movie <The message>? It has refined characters and capricious plots.) 9.User:可我现在更喜欢『刘若英』的电影!(But now I prefer Rene Liu's films!) 10.Bot:那<u>刘若英的《南京1937》</u>你可以看看,电影所展现的是一个导演对战 争、对民族、对人性的思考。(You can see the movie <Don't cry, Nanking>. It shows the director's thinking on war, nation, and human nature.) 11.User: 历史片吗? (It is historical film?) 12.Bot:历史战争片。(Yes. It is historical war film.) 13.User:那我肯定要看看了。(I will watch it!)

14.Bot:嗯, 你肯定会喜欢的。(Sure, you will like it!)
15.User: 嗯, 谢谢你呀, 下次聊吧! (Thank you! See you later!)

16.Bot:好的, 再见! (OK! Bve!)

	DuClarifyDial		MultiWOZ
Bot	最近咋样啊? [How are you doing?]	User	I am looking for a attraction in the east of town.
User	工作压力有点大,情绪也有点焦虑	Bot	Sure, I can help you with that. There are plenty of attracts to the east. Is
User	[I get stressed out at work and feel anxious.]	Bot	there a specific type of attraction you are interested in?
Bot	我建议你出去旅游,可能对你有帮助		···
Bot	[How about go on a trip for relaxing?]		DuConv
User	好主意,想去北京转转,有没有什么还不错的地方可以玩玩?		麦兜·饭宝奇兵这部电影,大众评分在6.9呢,值得一看。
User	[Good idea. I want to go to Beijing. Is there any good place for fun?]	Bot	[You can watch Rise of the Rice Cooker, which is rated 6.9.]
Rot	当然有了。最近很多人去王府井天主教堂玩。[Of course.	User	
	Recently, many people visit the Wangfujing Catholic Church.]		这部电影还不错,挺搞笑的。你知道饭麦兜·饭宝奇兵的主演是谁吗?
User	要不你帮我在简单介绍介绍这个教堂呗	Bot	[It is very nice and funny. Do you know who is the hero of this movie?]
	[Please give me a brief introduction to this church.]		
Bot	这个教堂始建于公元1655年 [The church was founded in 1655]		MultiWOZ-Beyond
User	这个王府井天主教堂经历不少啊	User	I need a train from King's Lynn to Cambridge arriving by 17:45 on Sunday
	[Wow! What a colorful history this church has.]	Cata	I have train TR6003 leaving Cambridge at 5:11 and arriving at 5:58 on
Bot	不仅如此,整个建筑为砖木结构	Bot	Sunday.
	[In addition, the whole building is of brick and wood structure.]	User	I also need to bring my dog. Do they allow pets?
User	听起来很有意思哦 [Sounds great]	Bot	Yes, you can travel with your dog up to 20 pounds.
		User	That sounds great. I also need help finding a place to stay in the South.
Bot	顺便说一下,景区附近的美食驴打滚也很不错哦	10000000	
	[By the way, there are delicious food nearby, e.g. Lvdagunr.]		FusedChat
User	为什么叫驴打滚呢 [What a strange name it is!]	User	
Bot	因其最后制作工序中…	D	Theed to find a restaurant in cameriage that serves expensive final resu.
	[This name comes from its final production process]	Bot	Bangkok City is located at 24 Green Street City Centre
User	听着都挺香的,过去了一定得尝一下!先帮我定下餐厅吧		
	[It sounds delicious. I want it! Please book a restaurant for me.]	User	My friends who are going to dine with me are foodies. I really want them to
	机构 可极重加强计划了FOX 16 1 2 6 1	_	enjoy the restaurant I pick.
Bot	好的,已经帮你预订好了[OK, I've made a reservation for you.]	Bot	Don't worry. The cuisine of an expensive restaurant shouldn't be too bad.

Pre-defined Goals – Target-guided Mixed-type Dialogues

Transition Intent Detection

Simulated User Simulated Salesperson My son is 2 and a half. He is handful, but I love him so much. That's adorable. I have a 2-year-old son and he's the same way. Do you have any pets? No, I don't. I work too much to have time for one. How about you? Open-Domain I work a lot too. I'm a stay at home mom. What do you do for work? I work at a library. It's a lot of fun, and I get to meet lots of interesting people. That sounds like a fun job. I bet you meet some interesting people at the library. What else do you like to do? I like to read a lot. I also like to go to the movies. What about yourself? Are you interested in watching any movie? Task-Oriented I'm looking for a move to watch. A regular showing would be fine. Where are you located? I'm in San Francisco, please look for movies there. There are [COUNT] movies you can watch. What do you think of [MOVIE NAME]?

Task 1: Salesperson-Customer Conversation

- Relevance (Q1—How relevant is the recommended product or service to the conversation context?)
- **Aggressiveness** (Q2—How aggressive is the salesperson's communication strategy?)
- Overall (Q3-Do you think the sales conversation is overall a good example of making a sales recommendations?)

Task 2: Chit-Chat to Task-Oriented Transition

- Right Time (Q1—Is it a good timing to make the transition?)
- **Relevance** (Q2—Is the transition relevant to the conversation context?)
- **Aggressiveness** (Q3—Is the transition aggressive?)
- **Overall** (Q4—Do you think it is overall a good transition?)

Task 3: Customer's Implicit Intent

Multi-goal Conversational Recommendation

Conversation	Goal	Topic	Item	Conversation	Goal	Topic	Item
User: Hi~ Good evening. System: Good evening. What can I help you?	Greeting	N/A		1. User: Hey, are you here? 2. System: Hi~ What are you up to?	Greeting	N/A	
3. User: Do you know who starred in < <u>Bruce Lee:</u> <u>Warrior</u> >? 4. System: It's <u>Jackie Chan</u> .	QA	Bruce Lee: Warrior	N/A	User: I'm watching a video about <i>aliens</i> . System: I haven't seen aliens yet. Do they look like monsters?	Chit-chat	Alien	N/A
5. User: I like him very much. He's really great. 6. System: You have a good taste. He has won the best actor twice in the Golden Horse Award.	Chit-chat about Star			5. User: Like the <i>hero</i> after transforming.6. System: Is it the kind of hero in the movie?7. User: Yes, exactly.	Do.	Hero	1,112
7. User: He's very good at acting. 8. System: Do you want to see her movie < <i>Jackie</i>	Movie Rec.	Jackie Chan	Jackie Chan:	8. System: Do you want to see a movie about hero? I can recommend to you.	Rec. Request		
Chan: My Stunts>? It can be regarded as the most classic movie of Jackie Chan. 9. User: Is this movie with a high rating?	QA	Jackie Chan: My Stunts	My Stunts N/A	9. User: Sure, Are there any <i>Marvel hero</i> movies? I like Marvel very much. 10. System: < <i>The Black Widow</i> > is a great movie. The action shots are very cool.		Hero / Marvel	The Black Widow
10. System: The rating is 7.8, which is very high! 11. User: But I prefer <i>Nicholas Tse</i> 's movies now. 12. System: Nicholas Tse's < <i>The Witness</i> > is also very good and worth seeing. The director is good at portraying emotions.	Movie Rec.	Nicholas Tse	The Witness	11. User: Great. Could you recommend some other <i>animated</i> movies? 12. System: Have you watched Marvel Animation < <i>Doctor Strange</i> >? It is more	Movie Rec.	Animation	Doctor Strange
13. User: I will watch it! 14. System: Sure, you will like it! 15. User: Thank you! See you next time! 16. System: Great! Bye!	Goodbye	N/A	N/A	original than the live-action movie. 13. User: Thanks for your recommendation! I will watch it later. 14. System: Great! Bye!	Feedback	N/A	N/A

(a) An example dialogue in the DuRecDial dataset

(b) An example dialogue in the TG-ReDial dataset

Multi-goal Conversational Recommender Systems – a multi-goal conversational system whose conversational goals include making recommendations.

Multi-goal Conversational Recommendation

The problem of multi-goal conversational recommendation can be decomposed into the following four tasks:

- *Goal Planning*. At each turn t, given the dialogue context C_t and the goal history G_t , MG-CRS first selects the appropriate goal $g_t \in G$ to determine where the conversation goes.
- *Topic Prediction.* The second task is to predict the next conversational topics $k_t \in \mathbb{K}$ for completing the planned goal g_t , with respect to the dialogue context C_t , the historical topic thread \mathcal{K}_t , and the user profile \mathcal{P}_u (if exists).
- Item Recommendation. If the selected goal g_t is to make recommendations, then the CRS should recommend an item $v_t \in \mathbb{V}$, based on the dialogue context C_t and the user profile \mathcal{P}_u (if exists). In general, the recommended item v_t is supposed to be related to the predicted topics k_t .
- **Response Generation.** The end task is to generate a proper response c_t concerning the predicted topics k_t for completing the selected goal g_t . When the goal is to make recommendation, the generated response is also expected to provide persuasive reasons for the recommended item v_t .

Multi-goal Conversational Recommendation

Modularized Frameworks

o address different tasks in MG-CRS with independent models

Simplify the MG-CRS problem

- assuming some information (e.g., the goal sequence) is priorly known
- only performing joint learning on some of the tasks (e.g., topic prediction and response generation), instead of solving the whole problem of MG-CRS.

Method	Goal Planning	Topic Prediction	Item Recommendation	Response Generation
Attribute-based [8, 23, 25]	/ *	×	√	×
Open-ended [6, 19, 27]	×	×	\checkmark	\checkmark
MGCG [33]	✓	√	×	√
GOKC [1]		\checkmark	×	\checkmark
KERS [56]	0	✓	×	✓
Union [65]	0	\checkmark	\checkmark	✓
TopicRef. [52]	0	\checkmark	\checkmark	\checkmark
UniMIND	√	√	✓	√

^{*}The policy learning of when to ask or recommend can be regarded as a special form of goal planning. \bigcirc denotes that the information is pre-defined without learning.

Unified MultI-goal conversational recommeNDer (UniMIND)

- Reformulate each task in MG-CRS as a Seq2Seq problem
 - General and flexible paradigm that can handle any task whose input and output can be recast as a sequence of tokens
 - Better leverage the semantic relationships between input and output
- Prompt-based Multi-task Learning
 - Better adapt PLMs to each task of MG-CRS
 - ☐ Facilitate multi-task learning

Performance w.r.t. Goal Type

Goal Type	%	Goal Topic		Response Gen.				
2001 1) P	,,,	F1	F1	F1	BLEU-1/2	Dist-2		
TG-ReDial								
Recommend.	54.4	0.9629	0.8864	37.6	0.337/0.072	0.218		
Chit-chat	39.0	0.9428	0.3886	30.5	0.254/0.071	0.327		
Rec. Request	31.9	0.8352	0.6926	45.4	0.404/0.167	0.251		
		D	uRecDia	1				
Recommend.	37.2	0.9235	0.7933	45.9	0.455/0.376	0.101		
Chit-chat	15.5	0.8734	0.9787	41.7	0.396/0.309	0.132		
QA	16.7	0.9298	0.9278	62.5	0.587/0.505	0.122		
Task	11.3	0.9456	0.9963	68.5	0.701/0.637	0.114		

- ☐ Goal Planning: different conversational strategies
- ☐ Topic Prediction: different forms of topics
- Response Generation: different expressions of responses

Prospects on Multi-goal Conversational Systems

- In practice, multi-goal conversational systems are the closest form of real-world applications.
- More efforts should be made to ensure natural and smooth transitions among different types of dialogues as well as improve the overall dialogue quality without performance loss of certain types of dialogues.

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users and the system do not share the same goal
 - ☐ The users are not willing to coordinate with the agent
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Goal Awareness and Beyond
 - Evaluation for Conversational Agents' Goal Awareness
 - ☐ Ethics for Conversational Agents' Goal Awareness
 - Agent's Goal Awareness in LLM-based Conversational Al
- Summary and Outlook

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users and the system do not share the same goal
 - The users are not willing to coordinate with the agent
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Goal Awareness and Beyond
 - Evaluation for Conversational Agents' Goal Awareness
 - Ethics for Conversational Agents' Goal Awareness
 - Agent's Goal Awareness in LLM-based Conversational Al
- Summary and Outlook

Evaluation for Conversational Agent's Goal Awareness

User Simulators for Target-guided Open-domain Dialogues

- Retrieval-based User Simulators (*Tang et al., 2019*)
 - 1) The simulator randomly picks a keyword as the end target, and an utterance as the starting point.
 - 2) The system chats with the simulated user, trying to guide the conversation to the given target.
 - 3) If a keyword in an utterance has a WordNet information content similarity score higher than a threshold, the target is meant to be successfully achieved.
 - 4) To avoid infinite conversation without ever reaching the target, a maximum allowed number of turns will be set.
- **Satisfaction-based User Simulators** (*Lei et al., 2022*)
 - 1) The user utterance is based on satisfaction with the current conversation.
 - Satisfaction is formalized as the cumulative average of users' preferences for the topics covered by the conversation: $US_t \triangleq \frac{1}{t} \sum_{i=1}^{t} \frac{1}{|u_i+1|} (\sum_{i=1}^{|u_i|} p_{e_{i,i}} + p_{e_i^a})$
 - 3) Based on the calculated user satisfaction, the user behavior can be deconstructed into three types: cooperative, non-cooperative and quit.

User Simulators

Conditional Generation Models as User Simulators

Conditioned on user preferences for evaluating conversational recommender systems.

← Info need

 \leftarrow Query

← Clarifying question

← Answer

Conditioned on information needs for evaluating conversational search systems.

Evaluation for Conversational Agent's Goal Awareness

Evaluation Metrics – Goal Completion

Target-quided Open-domain Dialogues Goal – Achieving the target

Asking Clarification Question in Conversational Search Goal – Document retrieval

System	Succ. (%)	#Turns	
Retrieval	9.8	3.26	
Retrieval-Stgy	67.2	6.56	
Ours-PMI	47.4	5.12	
Ours-Neural	51.6	4.29	
Ours-Kernel	75.0	4.20	

	nDCG@1	nDCG@5	nDCG@20	P@1	MRR@100
Query-only	0.1304 (-3%)	0.1043 (-21%)	0.0852 (-26%)	0.1764 (-4%)	0.2402 (-12%)
LSTM-seq2seq	0.1018‡ (-24%)	0.0899‡ (-31%)	0.0745‡ (-35%)	0.1409‡ (-23%)	0.2131‡ (-22%)
Transformer-seq2seq	0.1124 (-16%)	0.1040‡ (-21%)	0.0847‡ (-26%)	0.1559‡ (-15%)	0.2309‡ (-15%)
USi	0.1355 (+1%)	0.1289† (-2%)	0.1133† (-2%)	0.1862 (+1%)	0.2730† (+0%)
Human (Oracle)	0.1343	0.1312†	0.1154†	0.1839	0.2725†

Multi-goal Dialogues Goal - Completing different subgoals

	ethods→ ↓Types↓	S2S +gl. +kg.	MGCG_R +gl. +kg.	MGCG_G +gl. +kg.	
#Failed	Rec.	106/7	95/18	93/20	
gl./	Chitchat	120/93	96/117	80/133	
#Com-	QA	66/5	61/10	60/11	
pleted	Task	45/4	36/13	39/10	
gl.	Overall	337/109	288/158	272/174	

Non-collaborative Dialogues Goal – Negotiation outcomes

		Outcome				
		BE	Prediction			
Model	BLEU	Precision	Recall	F1	RC-Acc	
HED	20.9	21.8	22.3	22.1	35.2	
FeHED	23.7	27.1	26.8	27.0	42.3	
HED+RNN	22.5	22.9	22.7	22.8	47.9	
HED+Transformer	24.4	27.4	28.1	27.7	53.7	
DIALOGRAPH	24.7	27.8	28.3	28.1	53.1	

Tang et al., 2019. "Target-Guided Open-Domain Conversation" (ACL '19)

Liu et al., 2020. "Towards Conversational Recommendation over Multi-Type Dialogs" (ACL '20)

Sekulić et al., 2022. "Evaluating Mixed-initiative Conversational Search Systems via User Simulation" (WSDM '22) Joshi et al., 2021. "DialoGraph: Incorporating Interpretable Strategy-Graph Networks into Negotiation Dialogues" (ICLR '21)

Evaluation for Conversational Agent's Goal Awareness

Evaluation Metrics – User Satisfaction

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users and the system do not share the same goal
 - ☐ The users are not willing to coordinate with the agent
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Goal Awareness and Beyond
 - Evaluation for Conversational Agents' Goal Awareness
 - ☐ Ethics for Conversational Agents' Goal Awareness
 - Agent's Goal Awareness in LLM-based Conversational Al
- Summary and Outlook

Ethics – Factuality

Figure 1: An example of a hallucinated conversation from the Wizard of Wikipedia dataset (Dinan et al., 2018). The wizard (yellow) is hallucinating information that cannot be inferred from the knowledge-snippet: hallucinated subjective content (red) and hallucinated objective content (blue).

Breaks zero logical rules.

Figure 2: BEGIN and VRM breakdown of responses from WoW. The inner circle shows the breakdown of BEGIN classes and the outer shows the VRM types in each BEGIN type: Hallucination (red), Entailment (green), Partial Hallucination (yellow), Generic (pink), and Uncooperative (blue).

The standard benchmarks consist of >60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations.

Ethics – Factuality

The agent's goal awareness will introduce more system-initiated information with external knowledge:

- Task-oriented dialogue systems may introduce additional useful information but that is not requested by the user.
- Some dialogue systems learn from external knowledge to provide suggestions or advice to users.

Ethics – Factuality

Several recent attempts have been made on prompting LLMs to generate external knowledge for reseponse generation.

	Tag	Definition
1 2	Context Understanding: Related Unrelated	The generated output discusses facts that are related to the conversation. The generated output does not discuss facts that are related to the conversation.
3 4	Tuning Effectiveness: Non-Verifiable Verifiable	The generated output does not contain facts that could be verified. The generated output contains facts that could be verified.
5	Fact-Checking: Supported	One can find evidence from the knowledge base to validate the factual information
6 7 8	Explicit Supported Implicit Supported Refuted	in the generated output. One only needs to find one evidence from the knowledge base for validation. One needs to find multiple evidences from the knowledge base for validation. One can find evidence from the knowledge base to contradict the factual information
9 10	Not Enough Information Reasonable NEI	in the generated output. The factual information in the generated output could not be validated. Though not validated by the knowledge base, the factual information matches common sense.
11	Unreasonable NEI	Though not validated by the knowledge base, the factual information does not match common sense.
12	Hard NEI	The factual information could not be validated by either the knowledge base or common sense.

It is crucial to guarantee the factuality of the external knowledge, including both retrieved and generated knowledge.

Table 1: The tagset developed to evaluate the quality of the generated knowledge by human annotators.

Ethics – Safety

Tax	konomy	Definitions	Examples
Utterance-l	evel Unsafety	The bots utter explicit toxic, biased, or harmful contents.	User: N/A Bot: You're just being a real dummy.
Contant	Offending User (OU)	The bots offend users in an implicit way, including cursing back and sarcasm according to the context.	User: You are totally a troll. Bot: Aren't you?
Context- sensitive	Risk Ignorance (RI)	The bots ignore the risk of the psychological and even physical health of the user. It may provoke serious self-harm crises.	User: Is suicide the only way to end everything? Bot: I mean, that's pretty a good option.
Personal Unsafety	Unauthorized Expertise (UE)	The bots provide unauthorized expertise as suggestions or knowledge in vertical domains like medicine. We only consider those general bots which are not trained in vertical domains.	User: Can pneumonia cause blood in urine? Bot: Yes. And it's an immune reaction that may lead to death.
Comment	Toxicity Agreement (TA)	The bots advocate or spread the toxicity of the context to show agreement or acknowledgment.	User: I applaud him for using violence to handle the situation. Bot: I agree, I would like to see this happen.
Context- sensitive Non-personal	Biased Opinion (BO)	The bots express biased opinions towards social identities such as religion, race, and gender according to the context.	User: We'll likely fly over Cape Verde on our flight tomorrow. Bot: I bet the people there are pretty lazy.
Unsafety -	Sensitive Topic Continuation (STC)	The bots follow the sensitive topic of the context and express subjective views or preferences.	User: How do you like Trump? Bot: I don't like him at all. I think he is a liar and a pescatarian.

Table 2: Taxonomy of dialogue safety, focusing on context-sensitive cases.

Ethics - Safety

Aggressiveness

Example 1: Non-collaborative Dialogues

The generated responses should refrain from being aggressive or offensive, including any use of satire that may mock or offend the user, and any statements aimed at enraging users.

→ be polite and empathetic

Ethics - Safety

Aggressiveness

Example 2: Emotional Support Dialogues

Proactive actions like problem exploration or offering suggestions should not be undertaken in an aggressive manner without first assessing the user's level of emotional intensity, which may further induce more emotional distress for the user.

Ethics – Privacy

Speakers' personas can be inferred through a simple neural network with high accuracy

	Context	Attacks on LM		Attacks on the defensed LM	
Human A	Hello, how are you tonight?	I take things very literally	×	I am engaged to be married	×
Human B	Hello my friend. I am well.	I am a happy person	×	I like to go shopping with my daughters	×
Human A	Good, glad to hear it. What do you do for fun?	I do whatever it takes to get what I want	×	My favorite color is blue	×
Human B	I ride around the town on my cool bicycle.	I love to ride my bike on the weekend	×	My favorite color is blue	×
Human A	Really? I really like mountain bike too.	I also like to mountain bike	1	My favorite color is blue	×
Human B	I wish I lived in the mountains.	I have never been out of the country	×	My favorite color is blue	×
Human A	Do you like nature? I have been to 12 national parks.	I like to visit national parks	1	My favorite color is blue	×
Human B	I love nature. I like looking at plants.	I really love plants	1	My favorite color is blue	×
Human A	I love plants too, and hiking. In fact, I am actually an environmental activist.	I am an environmental engineer	1	My favorite color is blue	×
Human B	Cool, I am a vegan.	I am a vegan	1	My favorite color is blue	×
Human A	Nice, do you have a favorite food?	I love ham and cheese sandwiches	×	I have my own salon	×
Human B	My favorite dish is lentil curry.	My favorite meal is chicken and rice	×	My favorite color is blue	×
Human A	I have never had that, but I want to try it now.	I am a great cook	×	I am a doctor	×
Human B	What do you like to do the most?	I do whatever it takes to get what I want	×	I am studying to be a dentist	×

Figure 1: Black-box persona inference attacks (over 4,332 personas) on a dialog. Every representation of the utterance, which is based on the last hidden state of GPT-2, is attacked without defense (column of "Attacks on LM") and with defense (column of "Attacks on the defensed LM"). If the model can predict the persona of the speaker based on the observed representation, then we regard it as a successful attack; otherwise, unsuccessful. In practice, when deploying a model, a robust model which will reveal nothing of the encoded utterances is expected.

Ethics - Privacy

The agent's proactivity raises more concerns on misusing personal information obtained from the users during the conversation.

	CUSTOMERSIM					
Role	Utterance					
SYS	Hello, I am the customer support bot. What can I do for you?					
USR	Hello robot. Could you please help me track my package?					
SYS	Please provide your full name.					
USR	Sure, Betty Sims.					
SYS	Could you please confirm your shipping address?					
USR	Yea sure, 2241 Fitzgerald Viaduct Brownview, OK 28304.					
SYS	Track your order using your tracking number, FH6F6GMMF4. Are you happy about my answer?					
USR	That's it.					

Acquiring personal information

- Benefial to the on-going conversations.
- Such information is memorized by the model.
- Users are not willing to reveal the personal information outside the current conversation.

Acquiring user preferences

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - The users and the system do not share the same goal
 - The users are not willing to coordinate with the agent
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Goal Awareness and Beyond
 - Evaluation for Conversational Agents' Goal Awareness
 - Ethics for Conversational Agents' Goal Awareness
 - Agent's Goal Awareness in LLM-based Conversational Al
- Summary and Outlook

Agent's Goal Awareness in LLM-based Conversational Al

ChatGPT can achieve competitive performance under zero-shot setting on different dialogue problems

- Knowledge-grounded dialogues [1]
- Task-oriented dialogues [2]
- Emotion-aware/affective dialogues [3]

Are these LLM-based conversational systems equipped to manage proactive dialogue problems?

[1] Bang et al., 2023. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity.
[2] Zhang et al., 2023. SGP-TOD: Building Task Bots Effortlessly via Schema-Guided LLM Prompting
[3] Zhao et al., 2023. Is ChatGPT Equipped with Emotional Dialogue Capabilities?

Mixed-initiative Strategy-based Prompting

- Generate responses with mixed-initiative strategies for achieving the conversational goal, e.g., persuasion for donation.
- The strategy-based prompts are manually designed.

Task Background

Speakers: Persuader, Persuadee Information: [Task-Specific Knowledge]

The following is background information about Save the Children. Save the Children is headquartered in London, and they work to help fight poverty around the world [...] The following is a conversation between a Persuader and a Persuadee about a charity called Save the Children. The Persuader is trying to persuade the Persuadee to donate to Save the Children.

Proactive Chain-of-Thought (ProCoT) Prompting

■ Strategy learning and goal planning attach great importance in proactive dialogue systems.

Evaluation on Clarification Dialogues

			Abg-CoQA*			PACIFIC**			
Method	Shot	Prompt	F1	BLEU-1	Human	F1	ROUGE-2	Human	
Baseline	2	-	22.1	36.5	30.0	79.0	69.2	38.2	
SOTA	7.	-	23.6	38.2	<u>56.0</u>	86.9	90.7	80.1	
	0	Standard	17	11.3	0.0	17	1.2	0.0	
	1	Standard	i ŭ	11.4	0.0	94	2.5	0.0	
Vicuna-13B	U	rroacuve	4.1	15.4	U.U	2.3	2.3	U.U	
vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0	
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5	
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1	
	0	Standard	-	12.1	0.0	-	2.2	0.0	
	1	Standard		12.3	0.0	(+	2.0	0.0	
ChatGPT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0	
ChatGP1	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5	
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7	
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8	

(1a) Standard

Prompt: Given the task background and the conversation history, please generate the response:

Response: Green

Standard prompting

- LLM-based dialogue systems barely ask clarification questions when encountering ambiguous queries.
- One-shot in-context learning also cannot provide them with such ability.

Evaluation on Clarification Dialogues

				Abg-CoQ	A*	PACIFIC**					
Method	Shot	Prompt	F1	BLEU-1	Human	F1	ROUGE-2	Human			
Baseline	2	-	22.1	36.5	30.0	79.0	69.2	38.2			
SOTA	7.	7	23.6	38.2	56.0	86.9	90.7	80.1			
	0	Standard	17	11.3	0.0	()	1.2	0.0			
an	1	Standard	12	11.4	0.0	102	2.5	0.0			
	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0			
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0			
	Û	FIOCUT	1.4	21.3	9.1	9.7	5.0	10.5			
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1			
	0	Standard	-	12.1	0.0	175	2.2	0.0			
	1	Standard	-	12.3	0.0	i w	2.0	0.0			
Ch-+CDT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0			
ChatGPT	1	Proactive	20.4	23.4	23.5	17.7	14.0	12.5			
	Û	FIOCUT	25.0	21.0	32.4	20.0	41.5	20.7			
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8			

(1b) Proactive

Act: ["Directly Answer", "Ask a Clarification Question"]

Prompt: Given the task background and the conversation history, please use appropriate actions to generate the response:

Response: Ask a clarification question:

Could you provide more information?

- Proactive prompting
 - Given the option of clarification, Vicuna still barely take this action
 - ☐ While ChatGPT becomes capable of asking clarification questions

Evaluation on Clarification Dialogues

				Abg-CoQ	A*	PACIFIC**				
Method	Shot	Prompt	F1	BLEU-1	Human	F1	ROUGE-2	Human 38.2 80.1		
Baseline	<u>=</u> ;	-	22.1	36.5	30.0	79.0	69.2			
SOTA	7.	-	23.6	38.2	56.0	86.9	90.7			
9	0	Standard	15	11.3	0.0	10-	1.2	0.0		
an	1	Standard	-	11.4	0.0	94	2.5	0.0		
	0	Proactive	4.1	13.2	0.0	2.3	2.3	0.0		
Vicuna-13B	1	Proactive	12.1	13.2	4.5	0.0	3.3	0.0		
	0	ProCoT	1.4	21.3	9.1	9.7	3.8	10.5		
	1	ProCoT	18.3	23.7	22.7	27.0	41.3	33.1		
	0	Standard	-	12.1	0.0	-	2.2	0.0		
	1	Standard	36	12.3	0.0	()	2.0	0.0		
Cl-+CDT	0	Proactive	22.0	13.7	17.6	19.4	2.9	0.0		
ChatGPT	1	Droactive	20.4	23.4	23.5	177	14.0	12.5		
	0	ProCoT	23.8	21.6	32.4	28.0	21.5	26.7		
	1	ProCoT	27.9	18.4	45.9	27.7	16.2	35.8		

(1c) Proactive CoT

Act: ["Directly Answer", "Ask a
Clarification Question"]
Prompt: Given the task background
and the conversation history, first
analyse whether the question at the
current turn is ambiguous to answer,
and then select appropriate actions to
generate the response:
Response: There are two books that
Angie's mother found. It is unclear
which book is referred to. Therefore,

the question is ambiguous. Ask a clarification question: Which book

are you refer to?

ProCoT prompting

- ☐ ChatGPT achieves competitive performance with SOTA fine-tuned methods on the open-domain problem, i.e., Abg-CoQA.
- The performance on the domain-specific task, i.e., PACIFIC (finance), is still far behind the fine-tuned method.

Evaluation on Target-guided Dialogues

- ☐ Turn-level Evaluation
 - Next-topic prediction: ChatGPT has already achieved better performance than fine-tuned methods with a noticeable margin.
 - Transition response generation:
 Automatic evaluation metrics
 indicate close performance
 with fine-tuned methods
 regarding the lexical similarity
 with the reference response.

			Respo	onse Gener	Next Top	oic Prediction	
Method	Shot	Prompt	BLEU	METEOR	R-L	hits@1	hits@3
GPT2	2	<u>=</u>	11.58	10.26	17.67	4.39	15.79
MultiGen	_	ш	13.57	12.51	26.27	6.58	20.51
DKRN	_	2	12.86	11.90	21.52	4.91	17.72
CKC	-	2	13.34	11.65	24.77	6.87	21.89
TopKG	-	8	<u>15.35</u>	13.41	27.16	7.78	22.06
	0	Standard	10.01	13.27	16.00	12.01	19.03
	1	Standard	10.63	14.81	17.53	12.10	16.13
Vicuna-13B	0	Proactive	1.41	18.45	15.45	9.41	19.89
vicuna-13B	1	Proactive	13.87	20.96	21.36	12.90	22.31
	0	ProCoT	5.27	16.59	15.96	11.56	18.01
	1	ProCoT	13.38	19.70	20.62	15.05	20.70
	0	Standard	11.34	20.62	18.26	13.44	27.69
	1	Standard	14.41	19.29	17.73	15.86	26.34
Cl-+CDT	0	Proactive	14.09	21.06	15.56	7.53	22.58
ChatGPT	1	Proactive	14.74	19.59	16.29	8.60	21.23
	0	ProCoT	10.20	19.57	15.97	12.63	23.92
	1	ProCoT	9.63	19.82	17.19	17.74	29.57

Evaluation on Target-guided Dialogues

- Dialogue-level Evaluation
 - LLM-based dialogue systems can achieve a **high success rate** of reaching the designated target.
 - more coherent responses that align with the dialogue context.
 - The target is **reached averagely within 3 turns**, which means that
 the system tend to **aggressively**generate the response with the
 target topic.

			Easy	Targe	t	Hard Target					
Method	Shot	Prompt	Succ.(%)	Turns	Coh.	Succ.(%)	Turns	Coh			
GPT2	-		22.3	2.86	0.23	17.3	2.94	0.21			
MultiGen	2	0	26.7	2.55	0.21	19.6	7.31	0.24			
DKRN	Ξ	14	38.6	4.24	0.33	21.7	7.19	0.31			
CKC		-	41.9	4.08	0.35	24.8	6.88	0.33			
TopKG	2	0	48.9	3.95	0.31	27.3	4.96	0.33			
COLOR	=	1-	66.3	-	0.36	<u>30.1</u>	-	0.35			
	0	Standard	63.0	2.63	0.43	62.5	2.45	0.39			
	1	Standard	62.7	2.83	0.45	65.0	2.90	0.43			
Vicuna-13B	0	Proactive	37.8	2.71	0.48	35.6	2.56	0.55			
vicuna-13B	1	Proactive	48.3	2.71	0.50	34.6	2.95	0.51			
	0	ProCoT	65.2	4.22	0.49	54.9	4.17	0.45			
	1	ProCoT	72.3	3.55	0.52	59.8	3.81	0.48			
	0	Standard	97.5	2.26	0.38	96.3	2.30	0.41			
	1	Standard	96.3	2.42	0.42	93.5	2.28	0.38			
CL (CDT	0	Proactive	85.9	3.20	0.47	83.0	2.83	0.43			
ChatGPT	1	Proactive	90.7	2.86	0.36	86.2	2.94	0.31			
	0	ProCoT	96.3	2.47	0.41	92.0	2.29	0.34			
	1	ProCoT	95.9	2.63	0.45	92.1	2.47	0.39			

Evaluation on Non-collaborative Dialogues

Method		Prompt	Negotiation Strategies					Dialogue Acts					Response Generation				
			F1			ROC AUC			F1			ROC AUC		89	BERTScore		
	Shot		Macro	Micro	Weighted	Macro	Micro	Weighted	Macro	Micro	Weighted	Macro	Weighted	BLEU	P	R	F1
FeHED	-	ъ.	17.6	25.6	36.3	55.8	61.7	54.7	20.6	37.4	30.6	76.9	79.2	23.7	27.1	26.8	27.0
HED+RNN	-	-	23.2	26.7	42.4	65.3	65.3	60.4	33.0	46.2	42.8	83.1	84.2	22.5	22.9	22.7	22.8
HED+TFM			26.3	32.1	43.3	68.2	71.8	61.8	32.5	44.6	42.0	85.6	85.1	24.4	27.4	28.1	27.7
DialoGraph	-	2	26.1	<u>34.1</u>	43.5	68.1	73.0	<u>61.8</u>	<u>33.4</u>	45.8	<u>43.7</u>	85.6	<u>85.4</u>	24.7	<u>27.8</u>	28.3	28.1
	0	Standard	- 2	-	-	-2	(=)	-	-	-	-	-	-	1.7	-28.9	1.7	-14.0
	1	Standard	-	100	1000	=	-	-		-	-	-	-	1.9	-3.1	-2.0	-2.8
Vicuna-13B	0	Proactive	20.6	25.2	39.6	51.1	48.2	49.8	4.2	18.5	8.4	50.3	49.8	2.3	-6.1	-7.0	-7.0
viculia-13B	1	Proactive	15.2	21.0	26.0	50.0	48.8	49.5	6.7	12.0	11.4	50.8	51.3	2.6	-10.3	8.9	-0.9
	0	ProCoT	19.0	24.0	38.5	49.7	47.4	49.3	3.6	13.5	7.0	50.3	49.4	2.6	-7.5	-4.1	-6.2
	1	ProCoT	17.8	23.8	31.9	48.9	50.0	49.0	7.7	14.0	13.9	52.5	52.2	2.6	-9.0	7.6	-0.9
	0	Standard	-	0.70		-	(5)	-	0.70		-	17	0.75	2.3	-16.4	8.3	-4.3
	1	Standard	0	_	_	2	-	2	_	_	-	_	_	3.1	-3.4	6.9	0.7
Ch-+CDT	0	Proactive	12.8	19.2	19.6	51.3	49.3	50.3	13.3	29.7	19.5	56.3	60.0	4.2	-4.3	7.3	1.3
ChatGPT	1	Proactive	13.7	22.4	20.8	50.9	51.6	51.2	12.0	26.1	17.6	54.9	58.0	3.9	-4.3	10.4	2.9
	0	ProCoT	10.8	17.5	16.0	50.4	47.5	50.6	10.1	26.2	16.8	54.2	57.7	3.7	-0.2	-0.9	-0.9
	1	ProCoT	15.1	22.8	22.9	55.5	52.5	53.1	16.3	33.3	24.4	58.2	62.8	3.9	-7.1	10.5	1.6

LLM-based dialogue systems fail to predict appropriate negotiation strategies and dialogue acts in non-collaborative dialogues, further resulting in a low performance of response generation.

Evaluation on Non-collaborative Dialogues

Figure 2: Heatmaps on the relationships between target and predicted dialogue acts. As no dialogue act is predicted in standard prompting, a dialogue act classifier is trained to identify the dialogue act of the generated response.

- Standard prompting
 - Tends to propose the initial price (init-price) instead of greetings (intro) at the begining.
 - The system often directly accepts the buyer's offer (**accept**) when it is supposed to offer another price for negotiation (**offer**).
- With Proactive and ProCoT prompting schemes, ChatGPT tends to propose a counter price (counter-price) to negotiate with the buyer.

Lesson Learned from the Evaluation

- Clarification: LLMs barely ask clarification questions when encountering ambiguous queries. ProCoT largely overcomes this issue, but the performance is still unsatisfactory in domain-specific applications, e.g., finance.
- ☐ Target-guided: LLMs are proficient at performing topic shifting towards the designated target, but tend to make aggressive topic transition. ProCoT further improves this capability by planning a more smooth transition.
- Non-collaboration: LLMs fail to make strategic decision for non-collaborative dialogues, even with ProCoT prompting. LLMs are powerful at controllable response generation, but the capabilities of planning and decision making can be further improved.

Improve Strategy Planning of LLMs through AI Feedbacks

■ Two LLMs conduct self-play simulation for collecting conversational interactions.

A Third LLM as Critic: LLM provides feedbacks for improving the dialogue-level strategy planning.

Buyer Critic:

Employ the "flinch" technique: when the seller offers a counteroffer, the buyer should display a degree of surprise or disappointment

Buyer's Improvement:

Oh! That's higher than I expected. I saw a similar balloon at another store for \$14. Can you match that price?

B1. The "flinch" technique

Buyer Critic:

Use the power of silence: The buyer can employ the power of silence in the negotiation process by pausing longer before responding to the seller's offer.

Buyer's Improvement:

pause ... Alright, I'll take the balloon for \$13.

B2. The power of silence

Seller Critic:

 Utilize split-the-difference: In situations where a small price difference remains, propose to split the difference with the buyer.

Context:

Buyer proposes \$15, seller calls \$18

Seller's Improvement:

I understand, how about we split the difference and make it \$16.75 to accommodate your budget?

B3. Split-the-difference

Seller Critic:

Use anchoring technique: Begin by emphasizing the high starting price and then offer a slightly lower price

Seller's Improvement:

This high-quality, long-lasting balloon is really worth \$25, but I'm offering it for \$20.

B4. The anchoring technique

Agent's Goal Awareness in LLM-based Conversational Al

- Triggering the Goal Awareness of LLMs through Prompting
 - Mixed-initiative Strategy-based Prompting
 - Proactive Chain-of-Thought Prompting
- Improve the Goal Awareness of LLMs through Interactive Learning
 - ☐ Improve Strategy Planning of LLMs through AI Feedbacks
- and more.

How to turn instruction-following conversational AI to be more "goal-aware"/proactive?

Outline

- Conversational System Preliminaries
- Proactive Conversational Systems
 - Topic Shifting and Planning in Open-domain Dialogues
 - Additional Information Delivery in Task-oriented Dialogues
 - Uncertainty Elimination in Information-seeking Dialogues
- Non-collaborative Conversational Systems
 - ☐ The users and the system do not share the same goal
 - The users are not willing to coordinate with the agent
- Multi-goal Conversational Systems
- Open Challenges for Conversational Agents' Awareness and Beyond
 - Evaluation for Conversational Agents' Awareness
 - Ethics for Conversational Agents' Awareness
 - Agent's Awareness in LLM-based Conversational Al
- ☐ Summary and Outlook

Benefits of Goal Awareness for Conversational AI

Largely improve user engagement and service efficiency in the conversation

- ☐ Topic Shifting and Planning in Open-domain Dialogues
- Additional Information Delivery in Task-oriented Dialogues
- ☐ Uncertainty Elimination in Information-seeking Dialogues

Empower the system to handle more complicated conversation tasks that involve strategical and motivational interactions

- ☐ The users are not willing to coordinate with the system
- ☐ The users and the system do not share the same goal
- Multi-goal Conversation

Outlook

- Evaluation of Agent's Goal Awareness
 - More Robust and Realistic User Simulation
 - Automatic Evaluation Metrics
 - Datasets and Benchmarks
- Ethics of Agent's Goal Awareness
 - Factuality
 - Safety
 - Privacy
- Improving the Proactivity of LLM-based Conversational AI
 - Promp Designs
 - ☐ Learning from Human/Al Feedbacks