
Unveiling Knowledge Boundary of Large Language Models for
Trustworthy Information Access

Yang Deng
Singapore Management University

Singapore
ydeng@smu.edu.sg

Moxin Li
National University of Singapore

Singapore
limoxin@u.nus.edu

Liang Pang
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

pangliang@ict.ac.cn

Wenxuan Zhang
Singapore University of Technology

and Design
Singapore

wxzhang@sutd.edu.sg

Wai Lam
The Chinese University of Hong Kong

Hong Kong SAR, China
wlam@se.cuhk.edu.hk

Abstract
Large Language Models (LLMs) have emerged as powerful tools
for generating content and facilitating information seeking across
diverse domains. While their integration into conversational sys-
tems opens new avenues for interactive information-seeking ex-
periences, their effectiveness is constrained by their knowledge
boundaries—the limits of what they know and their ability to pro-
vide reliable, truthful, and contextually appropriate information.
Understanding these boundaries is essential for maximizing the
utility of LLMs for real-time information seeking while ensuring
their reliability and trustworthiness. In this tutorial, we will explore
the taxonomy of knowledge boundary in LLMs, addressing their
handling of uncertainty, response calibration, and mitigation of un-
intended behaviors that can arise during interaction with users. We
will also present advanced techniques for optimizing LLM behav-
ior in generative information-seeking tasks, ensuring that models
align with user expectations of accuracy and transparency. Atten-
dees will gain insights into research trends and practical methods
for enhancing the reliability and utility of LLMs for trustworthy
information access.

CCS Concepts
• Computing methodologies→ Natural language generation; •
Information systems→ Users and interactive retrieval; Informa-
tion retrieval query processing.
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2 Motivation
Understanding the knowledge boundaries of large language models
(LLMs) is critical for developing safe, reliable, and effective gener-
ative information-seeking systems. These boundaries define the
scope and limitations of what an LLM knows, ensuring users re-
ceive accurate and trustworthy responses rather than fabricated
information [9]. By identifying these limits, systems can proac-
tively acknowledge uncertainties, avoid disseminating misinforma-
tion, and guide users toward verified sources when queries exceed
their expertise. This awareness enhances user trust and reliability,
particularly in high-stakes domains like healthcare or law, where
errors carry significant consequences. Additionally, studying knowl-
edge boundaries informs model improvements, highlighting gaps
in training data or reasoning capabilities, enabling targeted updates
for better alignment with real-world needs. It also equips systems
to handle ambiguous, emerging, or evolving topics by signaling
when information may be outdated or incomplete. Ultimately, map-
ping these frontiers ensures generative systems operate responsibly
while evolving to meet dynamic information demands.

3 Overview and Objectives
Specifically, this tutorial aims to discuss three key research ques-
tions (RQs) surrounding the knowledge boundary of large language
models (LLMs) for trustworthy information assess:
• RQ1:What is the knowledge boundary of LLMs?
• RQ2:Why do we care about the knowledge boundary of LLMs in
generative information-seeking systems?

• RQ3: How can the knowledge boundary of LLMs be identified?
• RQ4: How can issues caused by knowledge boundaries be mitigated
for trustworthy information access?

3.1 Taxonomy of Knowledge Boundary (RQ1)
We will first introduce different taxonomy of knowledge boundary
in the era of LLMs and then discuss their limitations for shedding
light on a more comprehensive taxonomy. A widely-adopted taxon-
omy of the knowledge for language models (LMs) in the literature
[4, 51] is derived from the Uncertainty Matrix [33], also called
Known-Unknown Quadrant. The knowledge is categorized based
on two factors: (1) whether the model has corresponding parametric
knowledge, and (2) whether the model is aware of the first factor.
Another taxonomy [50] formally defines three different types of the
knowledge for LMs, from the perspective of the model’s mastery
of knowledge. Our recent survey [24] introduces a more complete
and formalized taxonomy of the knowledge for LLMs, including
• Outward Knowledge Boundary defines the observable knowl-
edge boundary for a specific LLM.

• Parametric Knowledge Boundary defines the abstract knowl-
edge boundary for a specific LLM.

• Universal Knowledge Boundary defines the whole set of knowl-
edge known to human.

3.2 Undesired Behaviours (RQ2)
Due to the unawareness of knowledge boundary, LLM-based gen-
erative information-seeking systems exhibit several types of un-
desired behaviors that can compromise the reliability and utility
of their outputs for out-of-boundary user queries. In this part, we
will introduce the latest empirical analysis and findings of these
undesired behaviors:
• Factuality Hallucination, i.e., the model output diverges from
real-world facts, typically stem from the following causes. 1) Defi-
ciency in domain-specific knowledge: LLMs, primarily trained on
broad datasets, often lack detailed knowledge in specialized do-
mains, leading to inaccuracies in domain-specific queries [12, 32].
2) Outdated knowledge: Without mechanisms to update their in-
ternal knowledge, LLMs struggle to adapt to new developments,
often resorting to fabricating facts or using outdated responses
[20, 30]. 3) Over-confidence in unknown knowledge: LLMs of-
ten show overconfidence when addressing topics beyond their
knowledge, delivering assertive but incorrect responses [4, 16].

• Untruthful Responses Misled by Contexts. Even though
LLMs possess the required knowledge for the user query, they
often produce untruthful responses when misled by context,
which occurs in two forms: untruthful context, where the context
includes false or misleading information [31], and irrelevant con-
text, where extraneous details divert the model from generating
precise responses [11, 35].

• Truthful but Undesired Outputs. LLMs sometimes produce
accurate yet improper responses when handling certain queries,
leading to answers misaligned with user expectations, such as
random responses to ambiguous queries [15, 54].

Each poses unique challenges for the effective deployment of LLMs
in real-world generative information-seeking systems.

3.3 Knowledge Boundary Identification (RQ3)
Knowledge boundary identification is a crucial step in understand-
ing the limitations of LLMs. We will introduce three key approaches
to this challenging problem, including: 1) Uncertainty Estima-
tion aims to measure the model uncertainty towards the given
knowledge-related queries by token probability-based method [17]
and semantic-based method [21, 29]; 2) Calibration aims to esti-
mate model confidence on the correctness of their responses by
prompting for eliciting confidence [18, 37] or expressing confidence
[23, 40], and training additional models as calibrator [34, 38]; 3)
Internal State Probing aims to fine-tune linear probes on LLM
representations to predict LLM answer accuracy [6, 27].

3.4 Out-of-Boundary Query Mitigation (RQ4)
In this part, we will introduce the cutting-edge approaches on
mitigating the knowledge gap issue when LLM-based generative
information-seeking systems face user queries that exceed different
types of knowledge boundaries.

3.4.1 Queries Exceeding Outward Knowledge Boundary.
The answers to this type of queries are sensitive to the form of the
user query prompt fed into the LLM. Therefore, although the model
possesses corresponding parametric knowledge, sometimes it may
make untruthful responses without proper queries or contexts [50].
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Query optimization has become a main-stream approach to better
elicit this type of knowledge from LLMs for generative information
seeking, which can be roughly categorized into prompt optimization
and demonstration optimization. The prompt optimization includes
training-free methods such as search-based techniques [42, 56] and
adopting LLM as optimizer [47], and training-based methods typi-
cally involving reinforcement learning to train prompt optimization
modules [14, 55]. The demonstration optimization methods involve
various ways to select effective demonstrations such as considering
their similarity to the test example and their diversity [26, 31]. The
order of demonstrations also largely affect the performance [7].

3.4.2 Queries Exceeding Parametric Knowledge Boundary.
The user queries exceeding parametric knowledge boundary are
unable to be answered by the specific LLM, but the query itself is
answerable. To mitigate this knowledge gap, researchers investigate
different Retrieval-augmented Generation (RAG) approaches
to supplement necessary knowledge beyond the pre-trained knowl-
edge of LLMs. This enables the model to provide accurate answers
to domain-specific or real-time queries that it cannot answer based
solely on its pre-trained parameters. We will discuss various ap-
proaches, including retriever-enhanced models [36, 45], generator-
enhancedmodels [46, 52], and interaction-enhancedmodels [44, 48].
These methods are crucial for enhancing the factual accuracy and
adaptability of LLMs in specialized or evolving domains.

3.4.3 Queries Exceeding Universal Knowledge Boundary.
This type of query itself is unanswerable, regardless of any prompt
or any LLM. Therefore, directly responding to this type of query
will result in factuality hallucinations or undesired outputs.
• RefusalWhen faced with user queries involving model-agnostic
unknown knowledge, a straight-forward approach is to have
LLMs honestly express their knowledge limitations by refusing
to answer. We will introduce the latest studies on teaching LLMs
to say "I don’t know", including prompt-based [4, 43] and fine-
tuning-based approaches [16, 53].

• Asking Clarification Questions avoids providing direct an-
swers when uncertain. Instead, the LLM gives users an opportu-
nity to further clarify their queries [2, 3]. Recent studies develop
various training paradigms to teach LLMs to ask clarification
questions, such as in-context learning [15], self-learning [5], re-
inforcement learning [10], and contrastive learning [8].

3.5 Open Challenges and Prospects
In the last part, we will discuss the open challenges in investigating
the knowledge boundary of LLMs and potential future directions.
• Interpretability of Knowledge Boundary One of the key
challenges lies in making the knowledge boundary of LLMs in-
terpretable to users. Developing methods for localizing [27] or
explaining [28] the boundary in human-readable ways is essential
to improve trust and user interaction with LLMs.

• Generalization of Knowledge BoundaryWhile a model might
be able to identify its knowledge gaps in a specific domain, gen-
eralizing this capability across different languages [1] and appli-
cation domains [22] remains difficult. Future research need to
develop more adaptive and scalable techniques that can general-
ize knowledge boundary detection or mitigation across domains.

• Utilization of Knowledge Boundary Estimating and inform-
ing an LLM of its knowledge boundary should not be the final
step. Instead, recognizing the knowledge gap can be further lever-
aged to enhance the LLM’s utilities in areas where the knowledge
is lacking, such as reducing costs in RAG [49] and facilitating
self-improvement [41].

4 Other Information
Relevance to IR. The integration of LLMs is a trending topic

across various IR applications, including but not limited to search
engine, recommender systems, and conversational systems. LLM-
based conversational systems (e.g., ChatGPT) have revolutionized
our daily information seeking paradigms. However, the trust and
reliability is a key issue for applying LLMs into real-world IR applica-
tions, especially for information-seeking systems. Several tutorials
about the information seeking systems have been given in related
top-tier conferences, including but not limited to 1)WWW2024 / SI-
GIR 2024 - Recent Advances in Generative Information Retrieval [39],
2) SIGIR 2022 / WWW 2023 - Conversational Information Seeking:
Theory and Application [13], and 3) SIGIR 2020 - Recent Advances
in Conversational Information Retrieval [19]. However, these tuto-
rials mainly introduce advanced designs for building information
seeking systems. In our tutorial, we aim to elaborate a compre-
hensive introduction to cutting-edge research on the knowledge
boundary of LLMs and shed light on building LLM-based generative
information-seeking systems for trustworthy information access.

Detailed Schedule. The following summarizes the detailed sched-
ule of the tutorial:
(1) Introduction and Motivations [30 min]
(3) Taxonomy of Knowledge Boundary [30 min]
(4) Knowledge Boundary Identification [30 min]
(5) Out-of-Boundary Query Mitigation [60 min]
(6) Open Challenges and Beyond [30 min]

SupportingMaterials. (1) Slideswill bemade publicly available;
(2) The tutorial is accompanied with two comprehensive surveys
[24, 25] on this topic; and (3) A github repo will be maintained for
annotated references.
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